Skip to main content
Log in

Structure and RNA-Binding Properties of Lsm Protein from Halobacterium salinarum

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The structure and the RNA-binding properties of the Lsm protein from Halobacterium salinarum have been determined. A distinctive feature of this protein is the presence of a short L4 loop connecting the β3 and β4 strands. Since bacterial Lsm proteins (also called Hfq proteins) have a short L4 loop and form hexamers, whereas archaeal Lsm proteins (SmAP) have a long L4 loop and form heptamers, it has been suggested that the length of the L4 loop may affect the quaternary structure of Lsm proteins. Moreover, the L4 loop covers the region of SmAP corresponding to one of the RNA-binding sites in Hfq, and thus can affect the RNA-binding properties of the protein. Our results show that the SmAP from H. salinarum forms heptamers and possesses the same RNA-binding properties as homologous proteins with the long L4 loop. Therefore, the length of the L4 does not govern the number of monomers in the protein particles and does not affect the RNA-binding properties of Lsm proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

DTT:

1,4-dithiothreitol

Lsm protein:

Like Sm protein

SDS:

sodium dodecyl sulfate

References

  1. Murina, V. N., and Nikulin, A. D. (2011) RNA-binding Sm-like proteins of bacteria and archaea. Similarity and difference in structure and function, Biochemistry (Moscow), 76, 1434-1449, https://doi.org/10.1134/S0006297911130050.

    Article  CAS  Google Scholar 

  2. Mura, C., Randolph, P. S., Patterson, J., and Cozen, A. E. (2013) Archaeal and eukaryotic homologs of Hfq, RNA Biol., 10, 636-651, https://doi.org/10.4161/rna.24538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lekontseva, N. V., Stolboushkina, E. A., and Nikulin, A. D. (2021) Diversity of LSM Family proteins: similarities and differences, Biochemistry (Moscow), 86, S38-S49, https://doi.org/10.1134/S0006297921140042.

    Article  CAS  Google Scholar 

  4. Sauter, C., Basquin, J., and Suck, D. (2003) Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli, Nucleic Acids Res., 31, 4091-4098, https://doi.org/10.1093/nar/gkg480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sauer, E. (2013) Structure and RNA-binding properties of the bacterial LSm protein Hfq, RNA Biol., 10, 610-618, https://doi.org/10.4161/rna.24201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharif, H., and Conti, E. (2013) Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover, Cell Rep., 5, 283-291, https://doi.org/10.1016/j.celrep.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, L., Hang, J., Zhou, Y., Wan, R., Lu, G., et al. (2013) Crystal structures of the Lsm complex bound to the 3′-end sequence of U6 small nuclear RNA, Nature, 506, 116-120, https://doi.org/10.1038/nature12803.

    Article  CAS  PubMed  Google Scholar 

  8. Roth, A. J., Shuman, S., and Schwer, B. (2018) Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24, RNA, 24, 853-864, https://doi.org/10.1261/rna.066175.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K. W., Li, J., and Nagai, K. (2009) Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution, Nature, 458, 475-480, https://doi.org/10.1038/nature07851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilusz, C. J., and Wilusz, J. (2005) Eukaryotic Lsm proteins: lessons from bacteria, Nat. Struct. Mol. Biol., 12, 1031-1036, https://doi.org/10.1038/nsmb1037.

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen, J. S., Bøggild, A., Andersen, C. B. F. F., Nielsen, G., Boysen, A., et al. (2007) An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii, RNA, 13, 2213-2223, https://doi.org/10.1261/rna.689007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nikulin, A., Mikhailina, A., Lekontseva, N., Balobanov, V., Nikonova, E., and Tishchenko, S. (2017) Characterization of RNA-binding properties of the archaeal Hfq-like protein from Methanococcus jannaschii, J. Biomol. Struct. Dyn., 35, 1615-1628, https://doi.org/10.1080/07391102.2016.1189849.

    Article  CAS  PubMed  Google Scholar 

  13. Törö, I., Basquin, J., Teo-Dreher, H., and Suck, D. (2002) Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the sm1 and sm2 proteins from the hyperthermophile Archaeoglobus fulgidus, J. Mol. Biol., 320, 129-142, https://doi.org/10.1016/j.biochi.2020.05.001.

    Article  CAS  PubMed  Google Scholar 

  14. Kilic, T., Sanglier, S., Van Dorsselaer, A., and Suck, D. (2006) Oligomerization behavior of the archaeal Sm2-type protein from Archaeoglobus fulgidus, Protein Sci., 15, 2310-2317, https://doi.org/10.1016/j.biochi.2020.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lekontseva, N., Mikhailina, A., Fando, M., Kravchenko, O., Balobanov, V., et al. (2020) Crystal structures and RNA-binding properties of Lsm proteins from archaea Sulfolobus acidocaldarius and Methanococcus vannielii: similarity and difference of the U-binding mode, Biochimie, 175, 1-12, https://doi.org/10.1016/j.biochi.2020.05.001.

    Article  CAS  PubMed  Google Scholar 

  16. Balobanov, V., Lekontseva, N., Mikhaylina, A., and Nikulin, A. (2020) Use of fluorescent nucleotides to map RNA-binding sites on protein surface, Methods Mol. Biol., 2113, 251-262, https://doi.org/10.1007/978-1-0716-0278-2_17.

    Article  CAS  PubMed  Google Scholar 

  17. Nemchinova, M., Balobanov, V., Nikonova, E., Lekontseva, N., Mikhaylina, A., et al. (2017) An experimental tool to estimate the probability of a nucleotide presence in the crystal structures of the nucleotide–protein complexes, Protein J., 36, 157-165, https://doi.org/10.1016/j.biochi.2020.05.001.

    Article  CAS  PubMed  Google Scholar 

  18. Kabsch, W. (2010) XDS, Acta Crystallogr., D66, 125-132, https://doi.org/10.1107/S0907444909047337.

    Article  CAS  Google Scholar 

  19. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., et al. (2011) Overview of the CCP4 suite and current developments, Acta Crystallogr., D67, 235-242, https://doi.org/10.1107/S0907444910045749.

    Article  CAS  Google Scholar 

  20. Vagin, A., and Lebedev, A. (2015) MoRDa, an automatic molecular replacement pipeline, Acta Crystallogr., A71, s19-s19, https://doi.org/10.1107/S2053273315099672.

    Article  Google Scholar 

  21. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., et al. (2012) Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr., D68, 352-367, https://doi.org/10.1107/S0907444912001308.

    Article  CAS  Google Scholar 

  22. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr., D66, 213-221, https://doi.org/10.1107/S0907444909052925.

    Article  CAS  Google Scholar 

  23. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics, Acta Crystallogr., D60, 2126-2132, https://doi.org/10.1107/S0907444904019158.

    Article  CAS  Google Scholar 

  24. Törö, I., Thore, S., Mayer, C., Basquin, J., Séraphin, B., and Suck, D. (2001) RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex, EMBO J., 20, 2293-2303, https://doi.org/10.1093/emboj/20.9.2293.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Murina, V., Lekontseva, N., and Nikulin, A. (2013) Hfq binds ribonucleotides in three different RNA-binding sites, Acta Crystallogr., D69, 1504-1513, https://doi.org/10.1107/S090744491301010X.

    Article  CAS  Google Scholar 

  26. Thore, S., Mayer, C., Sauter, C., Weeks, S., and Suck, D. (2003) Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya, J. Biol. Chem., 278, 1239-1247, https://doi.org/10.1074/jbc.M207685200.

    Article  CAS  PubMed  Google Scholar 

  27. Mura, C., Phillips, M., Kozhukhovsky, A., and Eisenberg, D. (2003) Structure and assembly of an augmented Sm-like archaeal protein 14-mer, Proc. Natl. Acad. Sci. USA, 100, 4539-4544, https://doi.org/10.1073/pnas.0538042100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mura, C., Kozhukhovsky, A., Gingery, M., and Phillips, M. (2003) The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs), Protein Sci., 12, 832-847, https://doi.org/10.1110/ps.0224703.ensure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to V. Balobanov for help with measurements, V. V. Vrublevskaya for providing antibodies, and colleagues from the Institute of Biological Instrumentation of the Federal Research Center PSCBR, Russian Academy of Sciences, Pushchino, for providing an opportunity to perform SPR experiments.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-04-00222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey D. Nikulin.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fando, M.S., Mikhaylina, A.O., Lekontseva, N.V. et al. Structure and RNA-Binding Properties of Lsm Protein from Halobacterium salinarum. Biochemistry Moscow 86, 833–842 (2021). https://doi.org/10.1134/S000629792107004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792107004X

Keywords

Navigation