Skip to main content
Log in

Overview of the CKM physics opportunities beyond \(K^ + \to \pi ^ + \nu \bar \nu \)

  • Reviews
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A new experiment CKM is accepted by Fermilab for a very sensitive study of rare kaon decay \(K^ + \to \pi ^ + \nu \bar \nu \) on an intense separated kaon beam. The high quality of the beam and CKM setup make it possible to perform an important set of other kaon-decay measurements in parallel with the main research program: (1) the search for new physics effects beyond the Standard Model (search for new P, S, T interactions and lepton flavor violation in kaon decays); (2) further search for direct CP violation in charged kaon decays; (3) study of low-energy hadron physics in pure conditions of decay processes (K +π + l + l ; ππlν l; π 0 γγ, etc.). The expected results of these studies are compared with other experimental programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Frank et al. (Fermilab E921-CKM), A Proposal for a Precision Measurement of the Decay \(K^ + \to \pi ^ + \nu \bar \nu \) and Other Rare K + Processes at Fermilab Using the Main Injector (Fermilab, 2001).

  2. S. Adler et al. (BNL E787), Phys. Rev. Lett. 79, 2204 (1997); 84, 3768 (2000); hep-ex/0111091.

    ADS  Google Scholar 

  3. B. Bassalleck et al. (BNL E949), An Experiment to Measure \(B(K^ + \to \pi ^ + \nu \bar \nu )\) at BNL, BNL-67247 (1999).

  4. B. Aubert et al. (BaBar Collab.), hep-ex/0107013; Phys. Rev. Lett. 87, 091801 (2001); K. Abe et al. (Belle Collab.), hep-ex/0107061; Phys. Rev. Lett. 87, 091802 (2001).

    Google Scholar 

  5. L. G. Landsberg and V. F. Obraztsov, in Proceedings of the Workshop on K Physics (KAON-99), Chicago, 1999 (Univ. of Chicago Press, Chicago, 2000), p. 589; V. F. Obraztsov and L. G. Landsberg, hep-ex/0011033; in Proceedings of the International Conference on CP Violation Physics, Ferrara, 2000; L. G. Landsberg, Yad. Fiz. 64, 1811 (2001) [Phys. At. Nucl. 64, 1729 (2001)].

    Google Scholar 

  6. L. G. Landsberg and D. V. Vavilov, CKM Note 48 (2001).

  7. L. G. Landsberg et al., CKM Note 47 (2001).

  8. R. Appel et al. (BNL E865), Phys. Rev. Lett. 85, 2450 (2000).

    ADS  Google Scholar 

  9. R. Appel et al. (BNL E865), Phys. Rev. Lett. 85, 2877 (2000).

    ADS  Google Scholar 

  10. D. Ambrose et al. (BNL E871), Phys. Rev. Lett. 81, 5734 (1998).

    ADS  Google Scholar 

  11. KTeV Preliminary Results, Conference APS Division of Particles and Fields, Columbus, Ohio, 2000; A. Ledovskoy, in Proceedings of the Workshop on K Physics (KAON-2001).

  12. A. Alavi-Harati et al. (KTeV), hep-ex/0108037; Phys. Rev. Lett. 87, 111802 (2001).

    Google Scholar 

  13. L. M. Barkov et al., Research Proposal to PSI (1999); http://www.icepp.s.utokyo.ac.jpmeg; M. Bachman et al., MECO Proposal to BNL (1997); http://meco.ps.uci.edu.

  14. R. N. Cahn and H. Harari, Nucl. Phys. B 176, 135 (1980).

    Article  ADS  Google Scholar 

  15. J. Ritchie and S. Wojcicki, Rev. Mod. Phys. 65, 1149 (1993); T. S. Kosmas et al., Preprint IOA: 300/93 (Univ. of Ioannina, Ioannina, 1993); J. Bordes et al., Phys. Rev. D 60, 013005 (1999).

    Article  ADS  Google Scholar 

  16. T. G. Rizzo, hep-ph/9809526; in Proceedings of the Workshop on CP Violation, University of Adelaide, Adelaide, Australia, 1998.

  17. A. Belyaev et al., hep-ph/0008276; hep-ph/0107046.

  18. L. Littenberg and R. Shrok, Phys. Rev. Lett. 68, 443 (1992); hep-ph/0005285.

    Article  ADS  Google Scholar 

  19. Z. Gagyi-Palffy et al., Nucl. Phys. B 513, 517 (1998); Preprint RAL-090 (Chilton, 1994).

    Article  ADS  Google Scholar 

  20. S. Davidson et al., Z. Phys. C 61, 613 (1994).

    Article  ADS  Google Scholar 

  21. C. Dib et al., Phys. Lett. B 493, 82 (2000); hep-ph/0006277.

    ADS  Google Scholar 

  22. M. Schepkin, private communication, CKM Note 43 (2001).

  23. K. Zuber, Phys. Lett. B 479, 33 (2000); hep-ph/0003160.

    ADS  Google Scholar 

  24. C. Picciotto, Phys. Rev. D 56, 1612 (1997).

    Article  ADS  Google Scholar 

  25. R. G. Sachs, The Physics of Time Reversal (Univ. of Chicago Press, Chicago, 1987).

    Google Scholar 

  26. G. C. Branko, L. Lavora, and J. P. Silva, CP Violation (Clarendon, Oxford, 1999).

    Google Scholar 

  27. I. J. Bigi and A. I. Sanda, CP Violation (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  28. J. J. Sakurai, Phys. Rev. 109, 980 (1958).

    Article  ADS  Google Scholar 

  29. A. R. Zhitnitskii, Yad. Fiz. 31, 1024 (1980) [Sov. J. Nucl. Phys. 31, 529 (1980)]; V. P. Efrosinin et al., hep-ph/0008199.

    Google Scholar 

  30. Y. Grossman, Nucl. Phys. B 426, 355 (1994); G. Belanger and C. Geng, Phys. Rev. D 44, 2789 (1991); R. D. Peccei, hep-ph/9909236; in Proceedings of the Workshop on K Physics (KAON-99), Chicago, 1999 (Univ. of Chicago Press, Chicago, 2000), p. 23.

    Article  ADS  Google Scholar 

  31. E. P. Shabalin, Usp. Fiz. Nauk 171, 951 (2001).

    Article  Google Scholar 

  32. S. Blatt et al., Phys. Rev. D 27, 1056 (1983).

    Article  ADS  Google Scholar 

  33. M. Abe et al. (KEK E246), Phys. Rev. Lett. 83, 4253 (1999).

    ADS  Google Scholar 

  34. L. Littenberg, in Proceedings of International KEK Workshop “Kaons, Muons, Neutrino Physics and Future,” KEK, 1997, Ed. by Y. Kuno and T. Shinkava, KEK Proc. 97-24, p. 27.

  35. J. Gevais, J. Iliopoulos, and J. Kaplan, Phys. Lett. 20, 432 (1966).

    ADS  Google Scholar 

  36. V. Braguta et al., hep-ph/0106147.

  37. J. Bijnens et al., The Second DAΦNE Physics Handbook, Ed. by L. Maiani et al. (LNF, Frascati, 1995), Vol. 1, p. 315.

    Google Scholar 

  38. V. N. Bolotov et al., Yad. Fiz. 44, 108 (1986) [Sov. J. Nucl. Phys. 44, 68 (1986)].

    Google Scholar 

  39. H. Y. Cheng, Phys. Rev. D 26, 143 (1982).

    ADS  Google Scholar 

  40. O. Shanker, Nucl. Phys. B 204, 375 (1982); 206, 253 (1982).

    Article  ADS  Google Scholar 

  41. M. Finkemeier, The Second DAΦNE Physics Handbook, Ed. by L. Maiani et al. (LNF, Frascati, 1995), Vol. 1, p. 389.

    Google Scholar 

  42. S. S. Bulanov, Master Thesis (Mosk. Fiz.-Tekh. Inst., Moscow, 1999).

  43. Particle Data Group (D. E. Groum et al.), Eur. Phys. J. C 15, 1 (2000).

    Google Scholar 

  44. G. D'Ambrosio and G. Isidori, Int. J. Mod. Phys. A 13, 1 (1998).

    ADS  Google Scholar 

  45. L. Maiani and P. Paver, The Second DAΦNE Physics Handbook, Ed. by L. Maiani et al. (LNF, Frascati, 1995), Vol. 1, p. 51.

    Google Scholar 

  46. P. Franzini, The DAΦNE Physics Handbook, Ed. by L. Maiani et al. (LNF, Frascati, 1992), Vol. 1, p. 15.

    Google Scholar 

  47. V. V. Ammosov et al., Preprint No. 98-2 (IHEP, Protvino, 1998).

  48. N. Leros, Nucl. Phys. B (Proc. Suppl.) 99, 211 (2001).

    Article  Google Scholar 

  49. R. Batley et al., Proposal P253/CERN (SPSC); CERN/SPSC 2000-003.

  50. C. O. Dib and R. D. Peccei, Phys. Lett. B 249, 325 (1990).

    ADS  Google Scholar 

  51. A. A. Bel'kov et al., Phys. Lett. B 232, 118 (1989); 300, 283 (1993).

    ADS  Google Scholar 

  52. A. A. Bel'kov et al., hep-ph/0010142.

  53. E. P. Shabalin, Nucl. Phys. B 409, 87 (1993).

    Article  ADS  Google Scholar 

  54. E. P. Shabalin, Yad. Fiz. 62, 1657 (1999) [Phys. At. Nucl. 62, 1552 (1999)].

    Google Scholar 

  55. G. D'Ambrosio, hep-ph/9911522.

  56. G. Colangelo et al., hep-ph/9908415.

  57. G. Ecker et al., Nucl. Phys. B 291, 692 (1987).

    Article  ADS  Google Scholar 

  58. L. Bergstrom and P. Singer, Phys. Rev. Lett. 55, 2633 (1985); Phys. Rev. D 43, 1568 (1991).

    ADS  Google Scholar 

  59. E. P. Shabalin, Pis'ma Zh. Éksp. Teor. Fiz. 22, 117 (1975) [JETP Lett. 22, 53 (1975)].

    Google Scholar 

  60. R. Appel et al., Phys. Rev. Lett. 83, 4482 (1999).

    Article  ADS  Google Scholar 

  61. G. D'Ambrosio et al., JHEP 08, 004 (1998).

    ADS  Google Scholar 

  62. H. Burkhardt et al., hep-ph/0011345.

  63. A. L. Despande, Ph.D. Thesis (Yale University, 1995).

  64. C. Alliegro et al. (BNL E777), Phys. Rev. Lett. 68, 278 (1992).

    Article  ADS  Google Scholar 

  65. H. Ma et al. (BNL E865), Phys. Rev. Lett. 84, 2580 (2000).

    ADS  Google Scholar 

  66. S. Adler et al. (BNL E787), Phys. Rev. Lett. 79, 4756 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 65, No. 10, 2002, pp. 1795–1818.

Original English Text Copyright © 2002 by Landsberg.

This article was submitted by the author in English.

The extended version of the author's talk on the Meeting of the CKM Collaboration, University of Michigan, Ann Arbor, July 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landsberg, L.G. Overview of the CKM physics opportunities beyond \(K^ + \to \pi ^ + \nu \bar \nu \) . Phys. Atom. Nuclei 65, 1749–1770 (2002). https://doi.org/10.1134/1.1515838

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1515838

Keywords

Navigation