Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Co-delivery of indoleamine 2,3-dioxygenase prevents loss of expression of an antigenic transgene in dystrophic mouse muscles

Abstract

A significant problem affecting gene therapy approaches aiming at achieving long-term transgene expression is the immune response against the protein product of the therapeutic gene, which can reduce or eliminate the therapeutic effect. The problem is further exacerbated when therapy involves targeting an immunogenic tissue and/or one with a pre-existing inflammatory phenotype, such as dystrophic muscles. In this proof-of-principle study, we co-expressed a model antigen, bacterial β-galactosidase, with an immunosuppressive factor, indoleamine 2,3-dioxygenase 1 (IDO1), in muscles of the mdx mouse model of Duchenne muscular dystrophy. This treatment prevented loss of expression of the transgene concomitant with significantly elevated expression of T-regulatory (Treg) markers in the IDO1-expressing muscles. Moreover, co-expression of IDO1 resulted in reduced serum levels of anti-β-gal antibodies. These data indicate that co-expression of genes encoding immunomodulatory enzymes controlling kynurenine pathways provide a viable strategy for preventing loss of transgenes targeted into dystrophic muscles with pre-existing inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lavigne MD, Pohlschmidt M, Novo JF, Higgins B, Alakhov V, Lochmuller H et al. Promoter dependence of plasmid-pluronics targeted alpha galactosidase A expression in skeletal muscle of Fabry mice. Mol Ther 2005; 12: 985–990.

    Article  CAS  Google Scholar 

  2. Wells KE, Maule J, Kingston R, Foster K, McMahon J, Damien E et al. Immune responses, not promoter inactivation, are responsible for decreased long-term expression following plasmid gene transfer into skeletal muscle. FEBS Lett 1997; 407: 164–168.

    Article  CAS  Google Scholar 

  3. Marino M, Scuderi F, Provenzano C, Bartoccioni E . Skeletal muscle cells: from local inflammatory response to active immunity. Gene Ther 2011; 18: 109–116.

    Article  CAS  Google Scholar 

  4. Blake DJ, Weir A, Newey SE, Davies KE . Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82: 291–329.

    Article  CAS  Google Scholar 

  5. Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, Grange RW . Immune-mediated mechanisms potentially regulate the disease time-course of duchenne muscular dystrophy and provide targets for therapeutic intervention. PM R 2009; 1: 755–768.

    Article  Google Scholar 

  6. Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C et al. Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 2012; 20: 462–467.

    Article  CAS  Google Scholar 

  7. Aoki Y, Yokota T, Wood MJ . Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. Biomed Res Int 2013; 2013: 402369.

    Article  Google Scholar 

  8. Malik V, Rodino-Klapac LR, Viollet L, Mendell JR . Aminoglycoside-induced mutation suppression (stop codon readthrough) as a therapeutic strategy for Duchenne muscular dystrophy. Ther Adv Neurol Disord 2010; 3: 379–389.

    Article  CAS  Google Scholar 

  9. Goyenvalle A, Seto JT, Davies KE, Chamberlain J . Therapeutic approaches to muscular dystrophy. Hum Mol Genet 2011; 20: R69–R78.

    Article  CAS  Google Scholar 

  10. Mendell J, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S et al. Transient expression of a therapeutic dystrophin transgene in Duchenne muscular dystrophy revealed by T cell mediated immunity. Neurology 2010; 74 A111.

  11. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM . Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92: 1401–1405.

    Article  CAS  Google Scholar 

  12. Wang Z, Storb R, Halbert CL, Banks GB, Butts TM, Finn EE et al. Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther 2012; 20: 1501–1507.

    Article  CAS  Google Scholar 

  13. Dobrzynski E, Fitzgerald JC, Cao O, Mingozzi F, Wang LX, Herzog RW . Prevention of cytotoxic T lymphocyte responses to factor IX-expressing hepatocytes by gene transfer-induced regulatory T cells. Proc Natl Acad Sci USA 2006; 103: 4592–4597.

    Article  CAS  Google Scholar 

  14. Buhlmann JE, Foy TM, Aruffo A, Crassi KM, Ledbetter JA, Green WR et al. In the absence of a CD40 signal, B cells are tolerogenic. Immunity 1995; 2: 645–653.

    Article  CAS  Google Scholar 

  15. Dobrzynski E, Herzog RW . Tolerance induction by viral in vivo gene transfer. Clin Med Res 2005; 3: 234–240.

    Article  CAS  Google Scholar 

  16. Ezzelarab M, Thomson AW . Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 2011; 23: 252–263.

    Article  CAS  Google Scholar 

  17. Mascarell L, Zimmer A, Van Overtvelt L, Tourdot S, Moingeon P . Induction of allergen-specific tolerance via mucosal routes. Curr Top Microbiol Immunol 2011; 352: 85–105.

    CAS  PubMed  Google Scholar 

  18. Gravano DM, Vignali DA . The battle against immunopathology: infectious tolerance mediated by regulatory T cells. Cell Mol Life Sci 2012; 69: 1997–2008.

    Article  CAS  Google Scholar 

  19. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011; 12: 870–878.

    Article  CAS  Google Scholar 

  20. Madoiwa S, Yamauchi T, Hakamata Y, Kobayashi E, Arai M, Sugo T et al. Induction of immune tolerance by neonatal intravenous injection of human factor VIII in murine hemophilia A. J Thromb Haemost 2004; 2: 754–762.

    Article  CAS  Google Scholar 

  21. Zhang J, Xu L, Haskins ME, Parker Ponder K . Neonatal gene transfer with a retroviral vector results in tolerance to human factor IX in mice and dogs. Blood 2004; 103: 143–151.

    Article  CAS  Google Scholar 

  22. Min B, Legge KL, Caprio JC, Li L, Gregg R, Zaghouani H . Differential control of neonatal tolerance by antigen dose versus extended exposure and adjuvant. Cell Immunol 2000; 200: 45–55.

    Article  CAS  Google Scholar 

  23. Ichino M, Mor G, Conover J, Weiss WR, Takeno M, Ishii KJ et al. Factors associated with the development of neonatal tolerance after the administration of a plasmid DNA vaccine. J Immunol 1999; 162: 3814–3818.

    CAS  PubMed  Google Scholar 

  24. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frederick R et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 2012; 109: 2497–2502.

    Article  CAS  Google Scholar 

  25. Hara M, Yokoyama H, Fukuyama K, Kitamura N, Shimokawa N, Maeda K et al. Transcriptional regulation of the mouse CD11c promoter by AP-1 complex with JunD and Fra2 in dendritic cells. Mol Immunol 2013; 53: 295–301.

    Article  CAS  Google Scholar 

  26. Ni J, Nolte B, Arnold A, Fournier P, Schirrmacher V . Targeting anti-tumor DNA vaccines to dendritic cells via a short CD11c promoter sequence. Vaccine 2009; 27: 5480–5487.

    Article  CAS  Google Scholar 

  27. Edelmann SL, Nelson PJ, Brocker T . Comparative promoter analysis in vivo: identification of a dendritic cell-specific promoter module. Blood 2011; 118: e40–e49.

    Article  CAS  Google Scholar 

  28. Young CN, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy 2015; 11: 113–130.

    Article  Google Scholar 

  29. Wolff J, Malone R, Williams P, Chong W, Acsadi G, Jani A et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247 (4949 Pt 1): 1465–1468.

    Article  CAS  Google Scholar 

  30. Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 2009; 325: 1142–1146.

    Article  CAS  Google Scholar 

  31. Jung ID, Lee MG, Chang JH, Lee JS, Jeong YI, Lee CM et al. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J Immunol 2009; 182: 3146–3154.

    Article  CAS  Google Scholar 

  32. Gu T, Rowswell-Turner RB, Kilinc MO, Egilmez NK . Central role of IFNgamma-indoleamine 2,3-dioxygenase axis in regulation of interleukin-12-mediated antitumor immunity. Cancer Res 2010; 70: 129–138.

    Article  CAS  Google Scholar 

  33. Metghalchi S, Ponnuswamy P, Simon T, Haddad Y, Laurans L, Clement M et al. Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metab 2015; 22: 460–471.

    Article  CAS  Google Scholar 

  34. Nitahara-Kasahara Y, Hayashita-Kinoh H, Chiyo T, Nishiyama A, Okada H, Takeda S et al. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet 2014; 23: 3990–4000.

    Article  CAS  Google Scholar 

  35. Hedrich CM, Bream JH . Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res 2010; 47: 185–206.

    Article  CAS  Google Scholar 

  36. Hsieh C, Macatonia S, Tripp C, Wolf S, O'Garra A, Murphy K . Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  CAS  Google Scholar 

  37. Eickhoff CS, Schnapp AR, Sagartz JE, Hoft DF . Lethal NK-mediated inflammation induced by IL-12 in the absence of polymorphic and nonpolymorphic MHC class I molecules. Cytokine 2013; 64: 25–29.

    Article  CAS  Google Scholar 

  38. Matino D, Gargaro M, Santagostino E, Di Minno MND, Castaman G, Morfini M et al. IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. J Clin Invest 125: 3766–3781.

  39. Shinde R, Shimoda M, Chaudhary K, Liu H, Mohamed E, Bradley J et al. B cell-intrinsic IDO1 regulates humoral immunity to T cell-independent antigens. J Immunol 2015; 195: 2374–2382.

    Article  CAS  Google Scholar 

  40. Vavrincova-Yaghi D, Deelman LE, van Goor H, Seelen MA, Vavrinec P, Kema IP et al. Local gene therapy with indoleamine 2,3-dioxygenase protects against development of transplant vasculopathy in chronic kidney transplant dysfsunction. Gene Ther 2016; 23: 797–806.

    Article  CAS  Google Scholar 

  41. Sinadinos A, Young CN, Al-Khalidi R, Teti A, Kalinski P, Mohamad S et al. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of Duchenne muscular dystrophy. PLoS Med 2015; 12: e1001888.

    Article  Google Scholar 

  42. Lavigne MD, Yates L, Coxhead P, Gorecki DC . Nuclear-targeted chimeric vector enhancing nonviral gene transfer into skeletal muscle of Fabry mice in vivo. FASEB J 2008; 22: 2097–2107.

    Article  CAS  Google Scholar 

  43. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682.

    Article  CAS  Google Scholar 

  44. Aubert D, Menoret S, Chiari E, Pichard V, Durand S, Tesson L et al. Cytotoxic immune response blunts long-term transgene expression after efficient retroviral-mediated hepatic gene transfer in rat. Mol Ther 2002; 5: 388–396.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor J Golab, Drs C Sharp and T Brocker for their kind gifts of pcDNA3.IDO1, lacZ, and CD11c promoter plasmids, respectively and Dr P Kalinski for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Gorecki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Al-Khalidi, R., Edgar, S. et al. Co-delivery of indoleamine 2,3-dioxygenase prevents loss of expression of an antigenic transgene in dystrophic mouse muscles. Gene Ther 24, 113–119 (2017). https://doi.org/10.1038/gt.2016.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.82

Search

Quick links