Skip to main content
Log in

Adventures in Neural Plasticity, Aging, and Neurodegenerative Disorders Aboard the CWC Beagle

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This article recounts some of the scientific endeavors of Carl W. Cotman (CWC) during his journeys through the cellular circuitry of the mammalian brain. I have selected for consideration his findings that have been an important impetus for my own research; in several cases our different experiments have provided complementary data to support an hypothesis. Three examples are (i) Carl's studies of the roles of glutamate in synaptic transmission and plasticity in the adult brain and my studies of how glutamate regulates neurite outgrowth and cell survival in brain development; (ii) his and our studies of the mechanisms whereby amyloid β-peptide damages and kills neurons; and (iii) Carl's evidence that physical activity regulates neurotrophin levels in the brain and our evidence that dietary restriction has similar effects and is neuroprotective. In case you have not yet realized how I chose a title for this article it is because Carl has a (very distant) connection with Charles Darwin—Darwin sailed on a vessel called the Beagle and Carl has studied beagle dogs, establishing them as a model for understanding the neurobiology of human brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cotman, C. W., Matthews, D. A., Taylor, D., and Lynch, G. 1973. Synaptic rearrangement in the dentate gyrus: Histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Natl Acad. Sci. USA 70:3473-3477.

    PubMed  Google Scholar 

  2. Cotman, C. W. and Taylor, D. A. 1971. Autoradiographic analysis of protein synthesis in synaptosomal fractions. Brain Res. 29:366-372.

    Google Scholar 

  3. Kelly, P. T. and Cotman, C. W. 1977. Identification of glycoproteins and proteins at synapses in the central nervous system. J. Biol. Chem. 252:786-793.

    PubMed  Google Scholar 

  4. Foster, A. C., Mena, E. E., Fagg, G. E., and Cotman, C. W. 1981. Glutamate and aspartate binding sites are enriched in synaptic junctions isolated from rat brain. J. Neurosci. 1:620-625.

    PubMed  Google Scholar 

  5. Mena, E. E., Foster, A. C., Fagg, G. E., and Cotman, C. W. 1981. Identification of synapse specific components: Synaptic glycoproteins, proteins, and transmitter binding sites. J. Neurochem. 37:1557-1566.

    PubMed  Google Scholar 

  6. Monaghan, D. T., Holets, V. R., Toy, D. W., and Cotman, C. W. 1983. Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 306:176-179.

    PubMed  Google Scholar 

  7. Hoff, S. F., Scheff, S. W., Benardo, L. S., and Cotman, C. W. 1982. Lesion-induced synaptogenesis in the dentate gyrus of aged rats: I. Loss and reacquisition of normal synaptic density. J. Comp. Neurol. 205:246-252.

    PubMed  Google Scholar 

  8. Cotman, C. W., Geddes, J. W., and Kahle, J. S. 1990. Axon sprouting in the rodent and Alzheimer's disease brain: A reactivation of developmental mechanisms? Prog. Brain Res. 83:427-434.

    PubMed  Google Scholar 

  9. Ulas, J., Monaghan, D. T., and Cotman, C. W. 1990. Kainate receptors in the rat hippocampus: A distribution and time course of changes in response to unilateral lesions of the entorhinal cortex. J. Neurosci. 10:2352-2362.

    PubMed  Google Scholar 

  10. Sampedro, M. N., Bussineau, C. M., and Cotman, C. W. 1982. Turnover of brain postsynaptic densities after selective deaf-ferentation: Detection by means of an antibody to antigen PSD-95. Brain Res. 251:211-220.

    PubMed  Google Scholar 

  11. Cotman, C. W. and Nieto-Sampedro, M. 1984. Cell biology of synaptic plasticity. Science 225:1287-1294.

    PubMed  Google Scholar 

  12. Geddes, J. W., Monaghan, D. T., Cotman, C. W., Lott, I. T., Kim, R. C., and Chui, H. C. 1985. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 230:1179-1181.

    PubMed  Google Scholar 

  13. Gibbs, R. B., Harris, E. W., and Cotman, C. W. 1985. Replacement of damaged cortical projections by homotypic transplants of entorhinal cortex. J. Comp. Neurol. 237:47-64.

    PubMed  Google Scholar 

  14. Mattson, M. P. 1997. Neuroprotective signal transduction: Relevance to stroke. Neurosci. Biobehav. Rev. 21:193-206.

    PubMed  Google Scholar 

  15. Mattson, M. P., Murrain, M., Guthrie, P. B., and Kater, S. B. 1989. Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 9:3728-3740.

    PubMed  Google Scholar 

  16. Cheng, B. and Mattson, M. P. 1991. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7:1031-1041.

    PubMed  Google Scholar 

  17. Mattson, M. P., Lovell, M. A., Furukawa, K., and Markesbery, W. R. 1995. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65:1740-1751.

    PubMed  Google Scholar 

  18. Zhang, Y., Tatsuno, T., Carney, J. M., and Mattson, M. P. 1993. Basic FGF, NGF, and IGFs protect hippocampal and cortical neurons against iron-induced degeneration. J. Cereb. Blood Flow Metab. 13:378-388.

    PubMed  Google Scholar 

  19. Mark, R. J., Keller, J. N., Kruman, I., and Mattson, M. P. 1997. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. 756:205-214.

    PubMed  Google Scholar 

  20. Anderson, K. J., Dam, D., Lee, S., and Cotman, C. W. 1988. Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332:360-361.

    PubMed  Google Scholar 

  21. Mattson, M. P., Keller, J. N., and Begley, J. G. 1998. Evidence for synaptic apoptosis. Exp. Neurol. 153:35-48.

    PubMed  Google Scholar 

  22. Mattson, M. P., Partin, J., and Begley, J. G. 1998. Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res. 807:167-176.

    PubMed  Google Scholar 

  23. Duan, W., Rangnekar, V. M., and Mattson, M. P. 1999. Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: Evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J. Neurochem. 72:2312-2322.

    PubMed  Google Scholar 

  24. Ivins, K. J., Bui, E. T., and Cotman, C. W. 1998. Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: Evidence for neuritic apoptosis. Neurobiol. Dis. 5:365-378.

    PubMed  Google Scholar 

  25. Glazner, G. W., Chan, S. L., Lu, C., and Mattson, M. P. 2000. Caspase-mediated degradation of AMPA receptor subunits: A mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20:3641-3649.

    PubMed  Google Scholar 

  26. Lu, C., Fu, W., Salvesen, G., and Mattson, M. P. 2002. Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: Implications for synaptic plasticity and excitotoxic neuronal death. Neuromol. Med. 1:69-79.

    Google Scholar 

  27. Mattson, M. P., Dou, P., and Kater, S. B. 1988. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087-2100.

    PubMed  Google Scholar 

  28. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W. 1988. Two classes of N-methyl-D-aspartate recognition sites: Differential distribution and differential regulation by glycine. Proc. Natl. Acad. Sci. USA 85:9836-9840.

    PubMed  Google Scholar 

  29. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. 1989. The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29:365-402.

    PubMed  Google Scholar 

  30. Nadler, J. V., Perry, B. W., and Cotman, C. W. 1978. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676-677.

    PubMed  Google Scholar 

  31. Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P. 1999. Increased vulnerability of hippocampal neurons to excitoxic necrosis in presenilin-1 mutant knockin mice. Nature Med. 5:101-107.

    PubMed  Google Scholar 

  32. Furukawa, K., Smith-Swintosky, V. L., and Mattson, M. P. 1995. Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i. Exp. Neurol. 133:153-163.

    PubMed  Google Scholar 

  33. Bruce-Keller, A. J., Umberger, G., McFall, R., and Mattson, M. P. 1999. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45:8-15.

    PubMed  Google Scholar 

  34. Kater, S. B., Mattson, M. P., Cohan, C., and Connor, J. 1988. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11:315-321.

    PubMed  Google Scholar 

  35. Mattson, M. P., Lee, R. E., Adams, M. E., Guthrie, P. B., and Kater, S. B. 1988. Interactions between entorhinal axons and target hippocampal neurons: A role for glutamate in the development of hippocampal circuitry. Neuron 1:865-876.

    PubMed  Google Scholar 

  36. Mattson, M. P., Kumar, K. N., Wang, H., Cheng, B., and Michaelis, E. K. 1993. Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J. Neurosci. 13:4575-4588.

    PubMed  Google Scholar 

  37. Cheng, B., Furukawa, K., O'Keefe, J. A., Goodman, Y., Kihiko, M., Fabian, T., and Mattson, M. P. 1995. Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2+ responses to AMPA and NMDA in hippocampal neurons. J. Neurochem. 65:2525-2536.

    PubMed  Google Scholar 

  38. Cummings, B. J. and Cotman, C. W. 1995. Image analysis of beta-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet 346:1524-1528.

    PubMed  Google Scholar 

  39. Milgram, N. W., Zicker, S. C., Head, E., Muggenburg, B. A., Murphey, H., Ikeda-Douglas, C. J., and Cotman, C. W. 2002. Dietary enrichment counteracts age-associated cognitive dysfunction in canines. Neurobiol. Aging 23:737-745.

    PubMed  Google Scholar 

  40. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. 1992. Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376-389.

    PubMed  Google Scholar 

  41. Weiss, J. H., Pike, C. J., and Cotman, C. W. 1994. Ca2+ channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem. 62:372-375.

    PubMed  Google Scholar 

  42. Kelly, J. F., Furukawa, K., Barger, S. W., Rengen, M. R., Mark, R. J., Blanc, E. M., and Roth, G. S., and Mattson, M. P. 1996. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA 93:6753-6758.

    PubMed  Google Scholar 

  43. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. 1995. Amyloid beta-peptide impairs ion-motive ATPase activities: Evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15:6239-6249.

    PubMed  Google Scholar 

  44. Keller, J. N., Pang, Z., Geddes, J. W., Begley, J. G., Germeyer, A., Waeg, G., and Mattson, M. P. 1997. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69:273-284.

    PubMed  Google Scholar 

  45. Mark, R. J., Pang, Z., Geddes, J. W., Uchida, K., and Mattson, M. P. 1997. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. J. Neurosci. 17:1046-1054.

    PubMed  Google Scholar 

  46. Tong, L., Thornton, P. L., Balazs, R., and Cotman, C. W. 2001. Beta-amyloid-(1-42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J. Biol. Chem. 276:17301-17306.

    PubMed  Google Scholar 

  47. Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1:120-129.

    PubMed  Google Scholar 

  48. Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., and Cotman, C. W. 1993. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90:7951-7955.

    PubMed  Google Scholar 

  49. Kruman, I., Bruce-Keller, A. J., Bredesen, D., Waeg, G., and Mattson, M. P. 1997. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17:5089-5100.

    PubMed  Google Scholar 

  50. Guo, Q., Fu, W., Xie, J., Luo, H., Sells, S. F., Geddes, J. W., Bondada, V., Rangnekar, V. M., and Mattson, M. P. 1998. Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat. Med. 4:957-962.

    PubMed  Google Scholar 

  51. Bruce-Keller, A. J., Begley, J. G., Fu, W., Butterfield, D. A., Bredesen, D. E., Hutchins, J. B., Hensley, K., and Mattson, M. P. 1998. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J. Neurochem. 70:31-39.

    PubMed  Google Scholar 

  52. Keller, J. N., Kindy, M. S., Holtsberg, F. W., St Clair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B., and Mattson, M. P. 1998. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18:687-697.

    PubMed  Google Scholar 

  53. Ivins, K. J., Ivins, J. K., Sharp, J. P., and Cotman, C. W. 1999. Multiple pathways of apoptosis in PC12 cells: CrmA inhibits apoptosis induced by beta-amyloid. J. Biol. Chem. 274:2107-2112.

    PubMed  Google Scholar 

  54. Neeper, S. A., Gomez-Pinilla, F., Choi, J., and Cotman, C. W. 1996. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726:49-56.

    PubMed  Google Scholar 

  55. Cotman, C. W. and Berchtold, N. C. 2002. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25:295-301.

    PubMed  Google Scholar 

  56. Russo-Neustadt, A. A., Beard, R. C., Huang, Y. M., and Cotman, C. W. 2000. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101:305-312.

    PubMed  Google Scholar 

  57. Tong, L., Shen, H., Perreau, V. M., Balazs, R., and Cotman, C. W. 2001. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol. Dis. 8:1046-1056.

    PubMed  Google Scholar 

  58. Zhu, H., Guo, Q., and Mattson, M. P. 1999. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 842:224-229.

    PubMed  Google Scholar 

  59. Duan, W. and Mattson, M. P. 1999. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57:195-206.

    PubMed  Google Scholar 

  60. Duan, W., Guo, Z., Jiang, H., Ware, M., Li, X. J., and Mattson, M. P. 2003. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl. Acad. Sci. USA 100:2911-2916.

    PubMed  Google Scholar 

  61. Yu, Z. F. and Mattson, M. P. 1999. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: Evidence for a preconditioning mechanism. J. Neurosci. Res. 57:830-839.

    PubMed  Google Scholar 

  62. Prolla, T. A. and Mattson, M. P. 2001. Molecular mechanisms of brain aging and neurodegenerative disorders: Lessons from dietary restriction. Trends Neurosci. 24:S21-S31.

    PubMed  Google Scholar 

  63. Mattson, M. P., Chan, S. L., and Duan, W. 2002. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol. Rev. 82:637-672.

    PubMed  Google Scholar 

  64. Duan, W., Guo, Z., and Mattson, M. P. 2001. Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J. Neurochem. 76:619-626.

    PubMed  Google Scholar 

  65. Lee, J., Duan, W., and Mattson, M. P. 2002. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82:1367-1375.

    PubMed  Google Scholar 

  66. Guo, Z., Ersoz, A., Butterfield, D. A., and Mattson, M. P. 2000. Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: Preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid beta-peptide, iron, and 3-nitropropionic acid. J. Neurochem. 75:314-320.

    PubMed  Google Scholar 

  67. Cotman, C. W., Head, E., Muggenburg, B. A., Zicker, S., and Milgram, N. W. 2002. Brain aging in the canine: A diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol. Aging 23:809-818.

    PubMed  Google Scholar 

  68. Mattson, M. P. and Shea, T. B. 2003. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 26:137-146.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M.P. Adventures in Neural Plasticity, Aging, and Neurodegenerative Disorders Aboard the CWC Beagle. Neurochem Res 28, 1631–1637 (2003). https://doi.org/10.1023/A:1026000703290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026000703290

Navigation