Skip to main content
Log in

Interface Characterization of All-Perovskite Oxide Field Effect Heterostructures

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

All-oxide devices consisting of Niobium-doped Strontium Titanate (Nb:STO)/Strontium Titanate (STO)/Lanthanum Strontium Cuprous Oxide (LSCO) heterostructures were fabricated and characterized electrically for their interface properties through capacitance-voltage (C-V) and current-voltage (I-V) techniques, in the context of electric field effect studies. The C-V studies establish the occurrence of charge modulation in the LSCO channel. Absence of hysteresis in the C-V characteristic when the voltage is retraced suggests the absence of mobile ions in the gate oxide and slow interface traps. This is further corroborated by the absence of drift in the C-V characteristic and shift in the flat band voltage (V FB) when the device is subjected to temperature-bias aging. The interface state density obtained from V FB is ∼1012/cm2. The uncompensated hole concentration in the LSCO channel calculated from the measured room temperature C-V data is ∼1020/cm3 and is in good agreement with the expected hole concentration in LSCO. Current-time and current-voltage plots are invariant with respect to the polarity of the applied voltage up to ∼5 V. This, in a structure with asymmetric interfaces, indicates that the electrical contacts to STO are non-blocking and the conduction through STO is bulk-limited in this voltage regime. Thickness dependent current and capacitance studies also corroborate the bulk-limited nature of conduction through the device in this voltage regime. However, I-V characteristic shows a rectifying nature beyond ∼8 V indicating that the mechanism in this voltage regime could be interface limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  2. J. Mannhart, D.G. Schlom, J.G. Bednorz, and K.A. Müller, Phys. Rev. Lett., 67, 2099 (1991).

    Google Scholar 

  3. J. Mannhart, Mod. Phys. Lett. B, 6, 555 (1992).

    Google Scholar 

  4. A.T. Fiory and A.F. Hebard, Phys. Rev. Lett., 52, 2057 (1984).

    Google Scholar 

  5. A.T. Fiory, A.F. Hebard, R.H. Eick, P.M. Mankiewich, R.E. Howard, and M.L. O'Malley, Phys. Rev. Lett., 65, 3441 (1990).

    Google Scholar 

  6. U. Kabasawa, K. Asano, and T. Kobayashi, Jpn. J. Appl. Phys., 29, L86 (1990).

    Google Scholar 

  7. A. Levy, J.P. Falck, M.A. Kastner, W.J. Gallagher, A. Gupta, and A.W. Kleinsasser, J. Appl. Phys., 69, 4439 (1991).

    Google Scholar 

  8. X.X. Xi, Q. Li, C. Doughty, C. Kwon, S. Bhattacharya, A.T. Findikoglu, and T. Venkatesan, Appl. Phys. Lett., 59, 3740 (1991).

    Google Scholar 

  9. H. Lin, N.J. Wu, K. Xie, X.Y. Li, and A. Ignatiev, Appl. Phys. Lett., 65, 953 (1994); H. Liu et al., itAppl. Phys. Lett., 66, 1172 (dy1995).

    Google Scholar 

  10. Yu.A. Boikov, S.K. Esayan, Z.G. Ivanov, G. Brorsson, T. Claeson, J. Lee, and A. Safari, Appl. Phys. Lett., 61, 528 (1992).

    Google Scholar 

  11. X.X. Xi, C. Doughty, A. Walkenhorst, S.N. Mao, Q. Li, and T. Venkatesan, Appl. Phys. Lett., 61, 2353 (1992).

    Google Scholar 

  12. A. Walkenhorst, C. Doughty, X.X. Xi, Q. Li, C.J. Lobb, S.N. Mao, and T. Venkatesan, Phys. Rev. Lett., 69, 2709 (1993).

    Google Scholar 

  13. Y. Watanabe, Appl. Phys. Lett., 66, 1770 (1995).

    Google Scholar 

  14. Z.W. Dong, Z. Trajanovic, T. Boettcher, I. Takeuchi, V. Talyansky, C.-H. Chen, and T. Venkatesan, in Proceedings of the 3rd HTS-Workshop on Digital Applications, Josephson Junctions and 3-Terminal Devices, University of Twente, The Netherlands, April 21–23, 1996, pp. 93–99.

    Google Scholar 

  15. S.B. Ogale, V. Talyansky, C.H. Chen, R. Ramesh, R.L. Greene, and T. Venkatesan, Phys. Rev. Lett., 77, 1159 (1996).

    Google Scholar 

  16. V. Talyansky, S.B. Ogale, I. Takeuchi, C. Doughty, and T. Venkatesan, Phys. Rev. B, 53, 14575 (1996).

    Google Scholar 

  17. A.P. Ramirez, J. Phys. Cond. Matter, 9, 8171 (1997).

    Google Scholar 

  18. Z.W. Dong, Z. Trajanovic, T. Boettcher, I. Takeuchi, V. Talyansky, C.-H. Chen, R.P. Sharma, R. Ramesh, and T. Venkatesan, IEEE Transactions on Applied Superconductivity, 7, 3516 (1997).

    Google Scholar 

  19. S. Matthews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science, 276, 238 (1997).

    Google Scholar 

  20. D.M. Newns, J.A. Misewich, C.C. Tsuei, A. Gupta, B.A. Scott, and A. Schrott, Appl. Phys. Lett., 73, 780 (1998).

    Google Scholar 

  21. T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R.L. Greene, R. Ramesh, T. Venkatesan, and A.J. Millis, Phys. Rev. Lett., 86, 5998 (2001).

    Google Scholar 

  22. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science, 266, 1540 (1994).

    Google Scholar 

  23. H.-M. Christen, J. Mannhart, E.J. Williams, and Ch. Gerber, Phys. Rev. B, 49, 12095 (1994).

    Google Scholar 

  24. F. Jona and G. Shirane, Ferroelectric Crystals (Dover publications, New York, 1993), p. 134.

    Google Scholar 

  25. M. Iwabuchi and T. Kobayashi, J. Appl. Phys., 75, 5295 (1994).

    Google Scholar 

  26. A.S. Grove, Physics and Technology of Semiconductor Devices (John Wiley and Sons, New York), p. 272.

  27. N.P. Ong, Z.Z. Wang, J. Clayhold, J.M. Tarascon, L.H. Greene, and W.R. McKinnon, Phys. Rev. B (Rapid Commun), 35, 8807 (1987).

    Google Scholar 

  28. E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley &; Sons, New York, 1982).

    Google Scholar 

  29. Y. Wu, IEEE Trans. Electron Devices, ED-21, 499 (1974).

    Google Scholar 

  30. B. Reihl, J.G. Bednorz, K.A. Muller, Y. Jugnet, G. Landgren, and J.F. Morar, Phys. Rev. B, 30, 803 (1984).

    Google Scholar 

  31. V.E. Henrich, G. Dresselhaus, and N.J. Zeiger, Phys. Rev. B, 17, 4906 (1978).

    Google Scholar 

  32. B. Chalamala, S. Aggarwal, B. Nagaraj, and R. Ramesh, unpublished.

  33. C. Zhou and D.M. Newns, J. Appl. Phys., 82, 3081 (1997).

    Google Scholar 

  34. H.-C. Li, W. Si, A.D. West, and X.X. Xi, Appl. Phys. Lett., 73, 464 (1998).

    Google Scholar 

  35. J.Z. Sun, D.W. Abraham, R.A. Rao, and C.B. Eom, Appl. Phys. Lett., 74, 3017 (1999).

    Google Scholar 

  36. S. Stadler, Y.U. Idzerda, Z. Chen, S.B. Ogale, and T. Venkatesan, Appl. Phys. Lett., 75, 3384 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraj, B., Wu, T., Ogale, S. et al. Interface Characterization of All-Perovskite Oxide Field Effect Heterostructures. Journal of Electroceramics 8, 233–241 (2002). https://doi.org/10.1023/A:1020806402413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020806402413

Navigation