Skip to main content
Log in

Generalized Hitchin Systems and the Knizhnik–zamolodchikov–bernard Equation on Ellipic Curves

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Knizhnik–Zamolodchikov–Bernard (KZB) equation on an elliptic curve with a marked point is derived by classical Hamiltonian reduction and further quantization. We consider classical Hamiltonian systems on a cotangent bundle to the loop group L(GL(N, C)) extended by the shift operators, to be related to the elliptic module. After reduction, we obtain a Hamiltonian system on a cotangent bundle to the moduli of holomorphic principle bundles and an elliptic module. It is a particular example of generalized Hitchin systems (GHS) which are defined as Hamiltonian systems on cotangent bundles to the moduli of holomorphic bundles and to the moduli of curves. They are extensions of the Hitchin systems by the inclusion the moduli of curves. In contrast with the Hitchin systems, the algebra of integrals are noncommutative on GHS. We discuss the quantization procedure in our example. The quantization of the quadratic integral leads to the KZB equation. We present an explicit form of higher quantum Hitchin integrals which, upon reducing from GHS phase space to the Hitchin phase space, gives a particular example of the Beilinson–Drinfeld commutative algebra of differential operators on the moduli of holomorphic bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knizhnik, V. and Zamolodchikov, A.: Nuclear Phys. B 247 (1984), 83.

    Google Scholar 

  2. Bernard, D.: Nuclear Phys. B 303 (1988), 77; Nuclear Phys. B 309 (1988), 145.

    Google Scholar 

  3. Losev, A.: Coset construction and Bernard equation, Preprint CERN-TH.6215/91.

  4. Ivanov, D.: KZB equations on Riemann surfaces, hep-th/9410091.

  5. Hitchin, N.: Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347– 380.

    Google Scholar 

  6. Axelrod, S., Della Pietra, S. and Witten, E.: Geometric quantization of the Chern–Simons gauge theory, J. Differential Geom. 33 (1991) 787–902.

    Google Scholar 

  7. Hitchin, N.: Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91–114.

    Google Scholar 

  8. Falceto, F. and Gawedzky, K.: Chern–Simons states in genus 1, Comm. Math. Phys. 159 (1994), 471–503.

    Google Scholar 

  9. Etingof, P. and Kirillov, A.: Representations of affine Lie algebras, paraboloc differential equations and Láme functions, Duke Math. J. 74(3) (1994), 585–614.

    Google Scholar 

  10. Markman, E.: Spectral curves and integrable systems, Compositio Math. 93 (1994), 255–290.

    Google Scholar 

  11. Nekrasov, N.: Holomorphic bundles and many-body systems, PUPT-1534, hep-th/9503157.

  12. Enriques, B. and Rubtsov, V.: Hitchin systems, higher Gaudin operators and r-matrices, Preprint (1995)

  13. Beilinson, A. and Drinfeld, V.: Quantization of Hitchin's fibration and and Langlands program, Preprint (1994).

  14. Gorsky, A. and Nekrasov, N.: Elliptic Calogero–Moser system from the two-dimensional current algebra, Preprint ITEP-NG/1-94, hep-th/9401021

  15. Gorsky, A. and Nekrasov, N.: Nuclear Phys. B 414 (1994), 213; Nuclear Phys. B 436 (1995), 582.

    Google Scholar 

  16. Gibbons, J. and Hermsen, T.: A generalization of Calogero-Mozer system, Physica D 11 (1984), 337.

    Google Scholar 

  17. Krichever, I., Babelon, O., Biley, E. and Talon, M.: Spin generalization of the Calogero–Mozer system and the matrix KP equation, Preprint LPTHE 94/42.

  18. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, Gradute Texts in Math. 97 Springer-Verlag, New York, 1984.

    Google Scholar 

  19. Bernstein, J. N. and Shvartsman O. V.: Chevalley theorem for complex crystallographic groups, Funct. Anal. Appl. 12 (1978), 308–310.

    Google Scholar 

  20. Etingof, P., Frenkel, I. and Kirillov, A.: Spherical functions on affine Lie groups, Yale preprint, hep-th/9407047.

  21. Kostant, B.: Lecture Notes in Math. 170, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  22. Feigin, B. and Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras, Internat. J. Modern. Phys. A 7, Suppl. 1A (1992), 197–215.

    Google Scholar 

  23. Felder, G. and Wieczerkowski, C.: Conformal blocks on elliptic curves and the Knizhnik– Zamolodchikov–Bernard equations, Preprint, hep-th/9411004.

  24. Falceto, F. and Gawedzky, K.: EllipticWess–Zumino–Witten model from elliptic Chern–Simons theory, Preprint, hep-th/9502161.

  25. Olshanetsky, M. and Perelomov, A.: Quantum completely integrable systems connected with semisimple Lie algebras, Lett. Math. Phys. 2 (1977), 7–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olshanetsky, M.A. Generalized Hitchin Systems and the Knizhnik–zamolodchikov–bernard Equation on Ellipic Curves. Letters in Mathematical Physics 42, 59–71 (1997). https://doi.org/10.1023/A:1007308105086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007308105086

Navigation