Skip to main content
Log in

Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cyanobacteriochromes (CBCRs) are cyanobacterial linear tetrapyrrole-binding photoreceptors distantly related to phytochromes. Only the GAF domain is needed for chromophore incorporation and proper photoconversion of the CBCRs. Most CBCR GAF domains possess the canonical Cys residue stably ligating to the chromophore. DXCF-type CBCR GAF domains also possess a second Cys residue within the DXCF motif. This second Cys residue reversibly ligates to the C10 of the chromophore. The Cys adduct formation is mostly observed for the dark-adapted state but not for the photoproduct state. In this study, we discovered novel CBCR GAF domains with a DXCI motif instead of the DXCF motif. Since these CBCR GAF domains are categorized into two subfamilies (DXCI-1 and DXCI-2), the GAF domains from each subfamily were analyzed. Although the CBCR GAF domain belonging to the DXCI-2 subfamily showed orange/green reversible photoconversion without transient Cys ligation, the CBCR GAF domain belonging to the DXCI-1 subfamily showed reversible photoconversion between an orange-absorbing dark-adapted state and a blue-absorbing photoproduct state. This indicates that the second Cys residue is covalently bound to the C10 of the chromophore in the photoproduct state but not in the dark-adapted state. Since the covalent bond formation in the photoproduct state is atypical, site-directed mutagenesis was conducted to understand the molecular mechanism of this GAF domain. The Ile residue within the DXCI motif may be key for covalent bond formation in the photoproduct state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fushimi, K., & Narikawa, R. (2019). Cyanobacteriochromes: Photoreceptors covering the entire UV-to-visible spectrum. Current Opinion in Structural Biology, 57, 39–46. https://doi.org/10.1007/s43630-022-00198-z

    Article  CAS  PubMed  Google Scholar 

  2. Rockwell, N. C., & Lagarias, J. C. (2010). A brief history of phytochromes. ChemPhysChem, 11(6), 1172–1180. https://doi.org/10.1002/cphc.200900894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fushimi, K., Enomoto, G., Ikeuchi, M., & Narikawa, R. (2017). Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis. Photochemistry and Photobiology, 93(3), 681–691. https://doi.org/10.1111/php.12732

    Article  CAS  PubMed  Google Scholar 

  4. Oliinyk, O. S., Chernov, K. G., & Verkhusha, V. V. (2017). Bacterial phytochromes, cyanobacteriochromes and allophycocyanins as a source of near-infrared fluorescent probes. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18081691

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chee, R. K. W., Li, Y., Zhang, W., Campbell, R. E., & Zemp, R. J. (2018). In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. Journal of Biomedical Optics, 23(10), 1–11. https://doi.org/10.1117/1.JBO.23.10.106006

    Article  PubMed  Google Scholar 

  6. Blain-Hartung, M., Rockwell, N. C., Moreno, M. V., Martin, S. S., Gan, F., Bryant, D. A., & Lagarias, J. C. (2018). Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. The Journal of Biological Chemistry, 293(22), 8473–8483. https://doi.org/10.1074/jbc.RA118.002258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fushimi, K., Miyazaki, T., Kuwasaki, Y., Nakajima, T., Yamamoto, T., Suzuki, K., Ueda, Y., Miyake, K., Takeda, Y., Choi, J. H., Kawagishi, H., Park, E. Y., Ikeuchi, M., Sato, M., & Narikawa, R. (2019). Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8301–8309. https://doi.org/10.1073/pnas.1818836116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oliinyk, O. S., Shemetov, A. A., Pletnev, S., Shcherbakova, D. M., & Verkhusha, V. V. (2019). Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nature Communications, 10(1), 279. https://doi.org/10.1038/s41467-018-08050-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fushimi, K., Hasegawa, M., Ito, T., Rockwell, N. C., Enomoto, G., Ni-Ni, W., Lagarias, J. C., Ikeuchi, M., & Narikawa, R. (2020). Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15573–15580. https://doi.org/10.1073/pnas.2004273117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fushimi, K., & Narikawa, R. (2021). Phytochromes and cyanobacteriochromes: Photoreceptor molecules incorporating a linear tetrapyrrole chromophore. Advances in Experimental Medicine and Biology, 1293, 167–187. https://doi.org/10.1007/978-981-15-8763-4_10

    Article  CAS  PubMed  Google Scholar 

  11. Bandara, S., Rockwell, N. C., Zeng, X., Ren, Z., Wang, C., Shin, H., Martin, S. S., Moreno, M. V., Lagarias, J. C., & Yang, X. (2021). Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2025094118

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fushimi, K., Ikeuchi, M., & Narikawa, R. (2017). The expanded red/green cyanobacteriochrome lineage: An evolutionary hot spot. Photochemistry and Photobiology, 93(3), 903–906. https://doi.org/10.1111/php.12764

    Article  CAS  PubMed  Google Scholar 

  13. Yoshihara, S., Katayama, M., Geng, X., & Ikeuchi, M. (2004). Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant and Cell Physiology, 45(12), 1729–1737. https://doi.org/10.1093/pcp/pch214

    Article  CAS  PubMed  Google Scholar 

  14. Ishizuka, T., Shimada, T., Okajima, K., Yoshihara, S., Ochiai, Y., Katayama, M., & Ikeuchi, M. (2006). Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant and Cell Physiology, 47(9), 1251–1261. https://doi.org/10.1093/pcp/pcj095

    Article  CAS  PubMed  Google Scholar 

  15. Rockwell, N. C., Njuguna, S. L., Roberts, L., Castillo, E., Parson, V. L., Dwojak, S., Lagarias, J. C., & Spiller, S. C. (2008). A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry, 47(27), 7304–7316. https://doi.org/10.1021/bi800088t

    Article  CAS  PubMed  Google Scholar 

  16. Narikawa, R., Suzuki, F., Yoshihara, S., Higashi, S.-I., Watanabe, M., & Ikeuchi, M. (2011). Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 52(12), 2214–2224. https://doi.org/10.1093/pcp/pcr155

    Article  CAS  PubMed  Google Scholar 

  17. Rockwell, N. C., Martin, S. S., Gulevich, A. G., & Lagarias, J. C. (2012). Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry, 51(7), 1449–1463. https://doi.org/10.1021/bi201783j

    Article  CAS  PubMed  Google Scholar 

  18. Rockwell, N. C., Martin, S. S., & Lagarias, J. C. (2012). Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. Biochemistry, 51(17), 3576–3585. https://doi.org/10.1021/bi300171s

    Article  CAS  PubMed  Google Scholar 

  19. Enomoto, G., Hirose, Y., Narikawa, R., & Ikeuchi, M. (2012). Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr 1999. Biochemistry, 51(14), 3050–3058. https://doi.org/10.1021/bi300020u

    Article  CAS  PubMed  Google Scholar 

  20. Ma, Q., Hua, H.-H., Chen, Y., Liu, B.-B., Krämer, A. L., Scheer, H., Zhao, K.-H., & Zhou, M. (2012). A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp PCC7120. The FEBS Journal, 279(21), 4095–4108. https://doi.org/10.1111/febs.12003

    Article  CAS  PubMed  Google Scholar 

  21. Cho, S. M., Jeoung, S. C., Song, J.-Y., Kupriyanova, E. V., Pronina, N. A., Lee, B.-W., Jo, S. W., Park, B. S., Choi, S. B., Song, J. J., & Park, Y.-I. (2015). Genomic survey and biochemical analysis of recombinant candidate cyanobacteriochromes reveals enrichment for near UV/violet sensors in the halotolerant and alkaliphilic cyanobacterium Microcoleus IPPAS B353. The Journal of Biological Chemistry, 290(47), 28502–28514. https://doi.org/10.1074/jbc.M115.669150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiltbank, L. B., & Kehoe, D. M. (2016). Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. MBio, 7(1), e02130-e2215. https://doi.org/10.1128/mBio.02130-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasegawa, M., Fushimi, K., Miyake, K., Nakajima, T., Oikawa, Y., Enomoto, G., Sato, M., Ikeuchi, M., & Narikawa, R. (2018). Molecular characterization of DXCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. The Journal of Biological Chemistry, 293(5), 1713–1727. https://doi.org/10.1074/jbc.M117.816553

    Article  CAS  PubMed  Google Scholar 

  24. Ishizuka, T., Narikawa, R., Kohchi, T., Katayama, M., & Ikeuchi, M. (2007). Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Plant and Cell Physiology, 48(9), 1385–1390. https://doi.org/10.1093/pcp/pcm106

    Article  CAS  PubMed  Google Scholar 

  25. Ishizuka, T., Kamiya, A., Suzuki, H., Narikawa, R., Noguchi, T., Kohchi, T., Inomata, K., & Ikeuchi, M. (2011). The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Biochemistry, 50(6), 953–961. https://doi.org/10.1021/bi101626t

    Article  CAS  PubMed  Google Scholar 

  26. Narikawa, R., Ishizuka, T., Muraki, N., Shiba, T., Kurisu, G., & Ikeuchi, M. (2013). Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 918–923. https://doi.org/10.1073/pnas.1212098110

    Article  PubMed  Google Scholar 

  27. Burgie, E. S., Walker, J. M., Phillips, G. N., Jr., & Vierstra, R. D. (2013). A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Structure, 21(1), 88–97. https://doi.org/10.1016/j.str.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  28. Rockwell, N. C., Martin, S. S., & Lagarias, J. C. (2015). Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochemical and Photobiological Sciences, 14(5), 929–941. https://doi.org/10.1039/c4pp00486h

    Article  CAS  PubMed  Google Scholar 

  29. Fushimi, K., & Narikawa, R. (2021). Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Biochemical Journal, 478(5), 1043–1059. https://doi.org/10.1042/BCJ20210013

    Article  CAS  PubMed  Google Scholar 

  30. Fushimi, K., Rockwell, N. C., Enomoto, G., Ni-Ni, W., Martin, S. S., Gan, F., Bryant, D. A., Ikeuchi, M., Lagarias, J. C., & Narikawa, R. (2016). Cyanobacteriochrome photoreceptors lacking the canonical Cys residue. Biochemistry, 55(50), 6981–6995. https://doi.org/10.1021/acs.biochem.6b00940

    Article  CAS  PubMed  Google Scholar 

  31. Fushimi, K., Nakajima, T., Aono, Y., Yamamoto, T., Ni-Ni-Win, I., & M., Sato, M., & Narikawa, R. (2016). Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin. Frontiers in Microbiology, 7, 588. https://doi.org/10.3389/fmicb.2016.00588

    Article  PubMed  PubMed Central  Google Scholar 

  32. Narikawa, R., Kohchi, T., & Ikeuchi, M. (2008). Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr 1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochemical and Photobiological Sciences, 7(10), 1253–1259. https://doi.org/10.1039/b811214b

    Article  CAS  PubMed  Google Scholar 

  33. Miyake, K., Fushimi, K., Kashimoto, T., Maeda, K., Ni-Ni, W., Kimura, H., Sugishima, M., Ikeuchi, M., & Narikawa, R. (2020). Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. The FEBS Journal. https://doi.org/10.1111/febs.15230

    Article  PubMed  Google Scholar 

  34. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JST, CREST (JPM-JCR1653 to R.N.), by JSPS, Grants-in-Aid for Scientific Research (B) (22H02587 to R.N.), by the establishment of university fellowships toward the creation of science technology innovation (JPMJFS2139 to H.H.), and by TMU research fund for young scientists of the Tokyo Metropolitan University (to R.N.). The authors would like to appreciate Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rei Narikawa.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

This publication is dedicated to Prof. Silvia E. Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3014 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, H., Narikawa, R. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Photochem Photobiol Sci 22, 251–261 (2023). https://doi.org/10.1007/s43630-022-00310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00310-3

Keywords

Navigation