Skip to main content
Log in

Vibration suppression control for AMB system based on static learning process and feedforward current compensation

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Synchronous vibration caused by rotor eccentricity is an important obstacle to the development of an active magnetic bearing (AMB) system. To solve this problem, a novel autobalancing control strategy has been proposed, which includes a static learning process and dynamic feedforward current injection process. In this algorithm, a dynamic response process under unbalanced force is simulated by a static learning process. Then, a transfer function containing amplitude and phase information is obtained. According to the obtained transfer function information, a specific feedforward current is constructed to eliminate the synchronous component in the control current and realize the autobalancing of vibration displacement. Computational complexity compared with conventional control strategies is further investigated. Moreover, the velocity sensor is no longer needed in the proposed control strategy. The simulation and experimental results of the AMB system show that the synchronous component of the control current and the amplitude of the rotor vibration displacement can be significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The data and code used in this research are not publicly available but may be obtained upon request. Requests for access to the code should be made by email to m202171948@hust.edu.cn.

References

  1. Lu, J., Ye, C., Wan, S., et al.: Improved active disturbance rejection control for AMB flywheel system based on inverse system. Int. J. Dynam. Control (2023). https://doi.org/10.19595/j.cnki.1000-6753.tces.161866

    Article  Google Scholar 

  2. Dianov, A.: Estimation of the Mechanical Position of Reciprocating Compressor for Silent Stoppage. IEEE Open J Power Electron. 1, 64–73 (2020)

    Article  Google Scholar 

  3. Fang, J., Zheng, S., Han, B.: AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor. IEEE/ASME Trans. Mechatron. 18(1), 32–43 (2013)

    Article  Google Scholar 

  4. Sun, H., Jiang, D., Yang, J.: Current vibration suppression of magnetic bearing systems based on phase shift generalized integrator. J. Vib. Eng. Technol. 9, 1745–1754 (2021)

    Article  Google Scholar 

  5. Liangliang, C., Changsheng, Z., Zhongbo, W.: Two-degree-of-freedom control for active magnetic bearing flywheel rotor system based on inverse system decoupling. Trans China Electrotech. Soc. 32(23), 100–114 (2017)

    Google Scholar 

  6. Yang, K., Hu, Y., Wu, H., Zhou, J., Xiao, W.: Harmonic vibration suppression of maglev rotor system under variable rotational speed without speed measurement. Mechatronics 91, 102956 (2023)

    Article  Google Scholar 

  7. Ma, X., Zheng, S., Wang, K.: Active surge control for magnetically suspended centrifugal compressors using a variable equilibrium point approach. IEEE Trans. Industr. Electron. 66(12), 9383–9393 (2019)

    Article  Google Scholar 

  8. Chuan, M., Changsheng, Z.: Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm. IEEE Trans. Industr. Electron. 65(5), 4177–4186 (2018)

    Article  Google Scholar 

  9. Herzog, R., Buhler, P., Gahler, C., et al.: Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings. IEEE Trans. Control. Sys. Tech. 4(5), 580–586 (1996)

    Article  Google Scholar 

  10. Chao, L., Gang, L.: Autobalancing control for MSCMG based on sliding-mode observer and adaptive compensation. IEEE Trans. Industr. Electron. 63(7), 4346–4356 (2016)

    Article  Google Scholar 

  11. Zheng, S., Han, B., Feng, R., et al.: vibration suppression control for AMB supported motor driveline system using synchronous rotating frame transformation. IEEE Trans. Industr. Electron. 62(9), 5700–5708 (2015)

    Article  Google Scholar 

  12. Zheng, S., Chen, Q., Ren, H.: Active balancing control of AMB-rotor systems using a phase-shift notch filter connected in parallel mode. IEEE Trans. Industr. Electron. 63(6), 3777–3785 (2016)

    Article  Google Scholar 

  13. Cui, P., Li, S., Wang, Q., Gao, Q., Cui, J., Zhang, H.: Harmonic current suppression of an amb rotor system at variable rotation speed based on multiple phase-shift notch filters. IEEE Trans. Industr. Electron. 63(11), 6962–6969 (2016)

    Article  Google Scholar 

  14. Peng, C., He, J., Deng, Z., Liu, Q.: Parallel mode notch filters for vibration control of magnetically suspended flywheel in the full speed range. IET Electric Power Appl 14, 1672–1678 (2020)

    Article  Google Scholar 

  15. Higuchi T.: Digital Control System for Magnetic Bearings with Automatic Balancing[C]// Proc. 2nd. Int. Symposium of Magnetic Bearings (1990)

  16. Shafai, B., Beale, S., Larocca, P., et al.: Magnetic bearing control systems and adaptive forced balancing. Control Systems IEEE. 14(2), 4–13 (1994)

    Article  Google Scholar 

  17. Lum, K.Y., Coppola, V.T., Bernstein, D.S.: Adaptive autocentering control for an active magnetic bearing supporting a rotor with unknown mass imbalance. Elsevier (1996). https://doi.org/10.1016/S1474-6670(17)58532-8

    Article  Google Scholar 

  18. Liu, Z., Fang, J., Han, B.: Power reduction for the permanent magnet biased magnetic bearingless in MSCMG. J. Astro-nautics. 29(3), 1036–1041 (2008)

    Google Scholar 

  19. Fang, J., Yuan, R.: High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method. IEEE Trans. Industr. Electron. 58(9), 4331–4342 (2011)

    Article  Google Scholar 

  20. Ahrens, M., Kucera, L.: Performance of a magnetically suspended flywheel energy storage device. IEEE Trans. Control Syst. Technol. 4(5), 494–502 (1996)

    Article  Google Scholar 

  21. J. Lu, C. Ye, S. Wan, K. Liu, Y. Zhao, C. Ye, "Position Predictive Control for Magnetic Bearing Flywheel System Based on Inverse System," 2022 IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China, pp. 1–7 (2022)

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China under Grant 52077087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanming Wan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Lu, J., Wan, S. et al. Vibration suppression control for AMB system based on static learning process and feedforward current compensation. J. Power Electron. 24, 573–585 (2024). https://doi.org/10.1007/s43236-023-00745-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-023-00745-6

Keywords

Navigation