Skip to main content
Log in

Triaxial and density behaviour of quarry dust based geopolymer cement treated expansive soil with crushed waste glasses for pavement foundation purposes

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The effect of quarry dust based geopolymer cement (QDbGPC) and crushed waste glasses (CWG) on the triaxial and density characteristics of expansive test soil was investigated under laboratory conditions. Quarry dust is a solid waste the management of which poses a big problem to construction and environmental experts. So also is the management of waste glasses. Then again, the use conventional cement poses everyday threat to the environment as its utilization releases huge amount of CO2 to the environment thereby causing increased global warming. However, the utilization of quarry dust in the synthesis of geopolymer cements which is an eco-friendly geomaterial and by extension its use in the soil treatment protocol is the aim of this work. The test soil was observed to be a poorly graded A-2-6 soil according to USCS and AASHTO classification systems respectively. The treatment exercise showed that the shear characteristics of the treated soil improved consistently. The poisson ratio, porosity and submerged density improved with increased additives. The stress-strain relationship improved to a very stiff consistency which satisfies the requirements for subgrade and subbase materials in pavement construction. Finally, the utilization of QDbGPC proved to be a good replacement for conventional cement in terms of environmental issues resulting from CO2 emission, resistant to moisture, heat, sulphate attacks, etc on hydraulically bound materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Administration for State Highway Officials, Guide for Design of Pavement Structures, California, USA, 1993.

    Google Scholar 

  2. T.F. Fwa, The handbook of highway engineering, Tailor and Francis, New York, 2006.

    Google Scholar 

  3. M. D. Gidigasu, J. L. K. Dogbey, Geotechnical Characterization of Laterized Decomposed Rocks for Pavement Construction in Dry Sub-humid Environment, 6th South East Asian Conference on Soil Engineering, Taipei. 1 (1980) 493–506.

    Google Scholar 

  4. M. D. Olawale, Syntheses, characterization and Binding Strength of Geopolymers; a review, International Journal of Material Science and Alications 2(6) (2013) 185–193.

    Article  Google Scholar 

  5. K. C. Onyelowe, Nanosized Palm Bunch Ash Stabilization of Lateritic Soils for Construction Purposes. International Journal of Geotechnical Engineering, 13(1) (2017) 83–91.

    Google Scholar 

  6. K. C. Onyelowe, Nanostructured Waste Paper Ash Treated Lateritic Soil and Its California Bearing Ratio Optimization. Global J Technol Optim 8 (2017b) 220.

    Google Scholar 

  7. K. C. Onyelowe, “Nanostructured Waste Paper Ash Stabilization of Lateritic Soils for Pavement Base Construction Purposes”. Electronic J. Geotechnical Eng. 22(09) (2017) 3633–3647.

    Google Scholar 

  8. K. C. Onyelowe, B. V. Duc, Durability of nanostructured biomasses ash (NBA) stabilized expansive soils for pavement foundation, International J. Geotechnical Eng. (2018). DOI: https://doi.org/10.1080/19386362.2017.1422909 [Online].

    Google Scholar 

  9. K. C. Onyelowe, B. V. Duc, Predicting Subgrade Stiffness of Nanostructured Palm Bunch Ash Stabilized Lateritic Soil for Transport Geotechnics Purposes. Journal of GeoEngineering of Taiwan Geotechnical Society 13(2) (2018) 59–67.

    Google Scholar 

  10. K. J. Osinubi, Laboratory Trial of Soil Stabilization of Nigerian Black Cotton Soil. Nigerian Society of Engineers Technical Transactions 35(4) (2000) 13–21.

    Google Scholar 

  11. M. Muthukumar, S. K. Sekar, S. K. Shukla, Swelling and Shrinkage Behaviour of Expansive Soil Blended with Lime and Fibres. Advances in Reinforced Soil Structures, Sustainable Civil Infrastructures (2018) 41–48.

    Google Scholar 

  12. O. Masaki, Ō. Eiji, Carbon blacks as the source materials for carbon nanotechnology. Carbon Nanotechnol 6 (2006) 127–151.

    Google Scholar 

  13. K. J. Osinubi, V. Bafyau, A. O. Eberemu, Bagasse ash stabilization of lateritic soil, Springer Link Sciences and Business Media (2009) 271–280.

    Google Scholar 

  14. C. Phetchuay, S Horpibulsuk, A Suksiripattanapong, C. Arulrajah, A. Udomchai, Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Alied Clay Science 127 (2016) 134–142.

    Article  Google Scholar 

  15. C. Phetchuay, Horpibulsuk, S. Suksiripattanapong, C. Chinkulkijniwat, A Arulrajah, A and Disfani, M. M. Calcium carbide residue: Alkaline activator for clay-fly ash geopolymer. Constr. Build. Mater. 69 (2014) 285–294.

    Article  Google Scholar 

  16. A. S. A. Rashid, N. Latifi, C. L. Meehan, K. N. Manahiloh, Sustainable improvement of tropical residual soil using an environmentally friendly additive. Geotech. Geolog. Eng. 35(6) (2017) 2613–2623.

    Article  Google Scholar 

  17. S. L. Shen, Z. F. Wang, S. Horpibulsuk, and Kim, Y. H. Jet-Grouting with a newly developed technology: The Twin-Jet Method, Eng. Geology 152(1) (2013a) 87–95.

    Article  Google Scholar 

  18. S. L. Shen, Z. F. Wang, J. Yang, C. E. Ho, Generalized aroach for prediction of jet grout column diameter, Journal of Geotechnical and Geoenvironmental Engineering, 139(12) (2013) 2060–2069. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000932

    Article  Google Scholar 

  19. F. Skvara, T. Jilek, L. Kopecky, Geopolymer Materials Based on Fly Ash. Ceramics-Silikaty 46(3) (2005) 195–204.

    Google Scholar 

  20. G. N. Smith, I. G. N. Smith, Elements of Soil Mechanics, 7th Ed. Blackwell Science UK, 1998.

    Google Scholar 

  21. P. Sukmak, S. Horpibulsuk, S. L. Shen, P. Chindaprasirt, C. Suksiripattanapong, Factors influencing strength development in clay-fly ash geopolymer. Constr. Build. Mater. 47 (2013) 1125–1136.

    Article  Google Scholar 

  22. N. Latifi, F. Vahedifard, E. Ghazanfari, A. S. A. Rashid, Sustainable Usage of Calcium Carbide Residue for Stabilization of Clays. J. Mater. Civ. Eng. 30(6) (2018).

    Google Scholar 

  23. N. Latifi, F. Vahedifard, E. Ghazanfari, S. Horpibulsuk, A. Marto, J. Williams, Sustainable improvement of clays using low-carbon non-traditional additive. International Journal of Geomechanics 18(3) (2017) 04017162.

    Article  Google Scholar 

  24. N. Latifi, A. Eisazadeh, A. Marto, C. L. Meehan, Tropical residual soil stabilization: A powder form material for increasing soil strength. Constr. Build. Mater. 147 (2017) 827–836.

    Article  Google Scholar 

  25. A. Nikolov, I. Rostovsky, H. Nugteren, Geopolymer Materials Based on Natural Zeolite. Case Studies in Construction Materials 6 (2017) 198–205.

    Article  Google Scholar 

  26. E. Pimentel, Existing Methods for Swelling Test-a critical review. European Geosciences Union General Assembly 2015, EGU Division Energy, Resources and Environment, ERE, Energy Procedia 76 (2015) 96–105.

    Article  Google Scholar 

  27. S. L. Shen, Z. F. Wang, W. C. Cheng, Estimation of lateral displacement induced byjet grouting in clayey soils, Geotechnique, ICE 67(7) (2017) 621–630.

    Article  Google Scholar 

  28. K. Srinivasan, A. Sivakumar, Geopolymer Binders: A Need for Future Concrete Construction. ISRN Polymer Sciences (2013).

    Google Scholar 

  29. C. Suksiripattanapong, T. Srijumpa, S. Horpibulsuk, P. Sukmak, A. Arulrajah, Compressive strengths of water treatment sludge-fly ash geopolymer at various compression energies. Lowland Technology International 17(3) (2015) 147–156.

    Article  Google Scholar 

  30. M. Hoy, S. Horpibulsuk, R. Rachan, A. Chinkulkijniwat, A. Arulrajah, Recycled asphalt pavement-fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Science of the Total Environment 573 (2016) 19–26.

    Article  Google Scholar 

  31. P. Ghosh, H. Kumar, B. Krishanu, Fly ash and kaolinite-based geopolymers: processing and assessment of some geotechnical properties. Inter. J. Geotechnical Eng. 10(4) (2016) 377–386.

    Article  Google Scholar 

  32. R. M. Hamidi, Z. Man, K. A. Azizli, Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer. 4th International Conference of Process Engineering and Advanced Materials; Procedia Engineering 148 (2016) 189–193.

    Article  Google Scholar 

  33. Z. Hariz, A. M. M. Al-Bakri, H. Kamarudin, A. Nurliyana, B. Ridho, Review of Various Types of Geopolymer Materials with the Environmental Impact Assessment. MATEC Web of Conferences 97 (2017) 10–21.

    Google Scholar 

  34. K. Kayabali, S. Demir, Measurement of Swelling Pressure: Direct Method versus Indirect Methods. Can. Geotech. J. 48 (2011) 354–364.

    Article  Google Scholar 

  35. N.J. Meegoda, P. Ratanweera, Compressibility of contaminated fine grained soil. Geotech Testing Journal ASTM 17 (1994) 101–112.

    Article  Google Scholar 

  36. A. Tabarsa, N. Latifi, C. L. Meehan, K. N. Manahiloh, Laboratory investigation and field evaluation of loess improvement using nanoclay-A sustainable material for construction. Constr. Build. Mater. 158 (2018) 454–463.

    Article  Google Scholar 

  37. W. Fedrigo, W. P. Nunez, T. R. Kleinert, M. F. Matuella, J. A. P. Ceratti, Strength, Shrinkage, Erodibility and Capillary Flow Characteritics of Cement-treated Recycled Pavement Materials. Inter. J. Pave. Res. Tech. 10 (2017) 393–402.

    Article  Google Scholar 

  38. J. Davidovits, Geopolymer cement a review. InstitutGeopolymere, F-02100 Saint-Quentin, France. [Online], 2013.

    Google Scholar 

  39. R. Gopal, A.S.R. Rao, Basic and alied soil mechanics, 2nd Ed New Age Int’l Publishers, New Delhi, 2011.

    Google Scholar 

  40. F. Yang, Y. Li, Synthesis and alication of nanocarbon materials using plasma technology. Int. J. Chem. Eng. Al 6(1) (2015) 49–52.

    MathSciNet  Google Scholar 

  41. Y. Bao, L. Zhan, C. Wang, Y. Wang, G. Yang, J. Yang, W. Qiao, L. Ling, Synthesis of carbon nanofiber/carbon foam composite for catalyst suort in gas phase catalytic reactions, New Carbon Mater. 26(5) (2011) 341–346.

    Article  Google Scholar 

  42. L. Bromley, D. Hadfield, Geotechnical Asset Management: How Structural Engineers can exploit Geopolymer Injection Technology. URETEK Technical Report. [online], 2017.

    Google Scholar 

  43. Nigeria General Specification/Federal Ministry of Works and Housing. Testing for the selection of soil for roads and bridges, II 1997 391.

    Google Scholar 

  44. S. Rafat, I. K. Mohammad, Sulementary Cementing Materials. Springer, NY, 2011.

    Google Scholar 

  45. American Standard for Testing and Materials, Standard Specification for Pozzolan, ASTM C618, ASTM, West Conshohocken, 2014.

    Google Scholar 

  46. M. Anamika, C. Sanjukta, M. R. Prashant, W. Geeta, Evidence based green synthesis of nanoparticles. Adv. Mat. Lett 3(6) (2012) 519–525.

    Article  Google Scholar 

  47. A. Arulrajah, T. A. Kua, S. Horpibulsuk, C. Phetchuay, C. Suksiripattanapong, Y. J. Du, Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units. Constr. Build. Mater. 114 (2016) 400–406.

    Article  Google Scholar 

  48. H. Akbari, R. Mensah-Biney, J. Simms, Production of Geopolymer Binder from Coal Fly Ash to Make Cementless Concrete. World of Coal Ash (WOCA) Conference in Nasvhille, TN-May 5–7 [Online], 2015.

    Google Scholar 

  49. O. Arioz, M. Tuncan, E. Arioz, K. Kilinc, Geopolymer: A New Generation Construction Material. 31st Conference on Our World in Concrete and Strucures: 16–17 August, Singapore [online], 2006.

    Google Scholar 

  50. Y. B. Acar, I. Olivieri, Pore fluid effects on the fabric and hydraulic conductivity of laboratory compacted clay. Transp. Res. Rec. 199 (1990) 144–159.

    Google Scholar 

  51. H. A. Abdel-Gawwad, S. A. Abo-El-Enem, A Novel Method to Produce Dry Polymer Cement Powder. HBRC Journal 12 (2016) 13–24.

    Article  Google Scholar 

  52. BS 1377-2 Methods of Testing Soils for Civil Engineering Purposes, British Standard Institute, London, 1990.

    Google Scholar 

  53. BS 1377–7 Methods of Testing Soils for Civil Engineering Purposes; Shear Strength Test (Total Stress), British Standard Institute, London, 1990.

    Google Scholar 

  54. BS 1377-8 Methods of Testing Soils for Civil Engineering Purposes; Shear Strength Test (Cell and Effective Stress), British Standard Institute, London, 1990.

    Google Scholar 

  55. BS 1924 Methods of Tests for Stabilized Soil, British Standard Institute, London, 1990.

    Google Scholar 

  56. BS 5930 Methods of Soil Description, British Standard Institute, London, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kennedy Onyelowe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onyelowe, K., Igboayaka, C., Orji, F. et al. Triaxial and density behaviour of quarry dust based geopolymer cement treated expansive soil with crushed waste glasses for pavement foundation purposes. Int. J. Pavement Res. Technol. 12, 78–87 (2019). https://doi.org/10.1007/s42947-019-0010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0010-7

Keywords

Navigation