Skip to main content
Log in

The effect of in-situ cellulosic matrix on the photophysical properties of white emissive CQDs

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs), the newest member of carbonaceous nanomaterials, have drawn many considerations since the past two decades. A vast number of researchers made their efforts to demystify optical behavior of these materials despite being demanding. Nevertheless, their emission origin is still a controversial issue and this area suffers from a lack of hypothesis to explain the radiative transitions of these materials. White emissive CQDs are more prized among the other ones since it has provided an affordable warm white light source for many applications. In this paper, white emissive CQDs samples were prepared through a one-step hydrothermal synthesis approach. By using the advantage of possessing cellulosic networks in the Aloe Vera gel an in-situ matrix was created to encase CQDs particles. During the formation of CQDs particles, they were entrapped and created RGB nanoemitters in the cellulosic units. The leakage of the emitted photons during the radiative transitions followed by inner-filter effect (IFE) and self-/re-absorption acted as white light emissive sources. To scrutinize the validity and possibility of the hypothesis given in this paper, a series of spectroscopic analyses, including transmission electron microscopy (TEM), surface-enhanced Raman scattering (SERS), Fourier Transform Infrared (FT-IR), ultraviolet–visible (UV–Vis), and photoluminescence (PL) were conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data can be provided by the authors upon reasonable request.

References

  1. Demming A (2010) King of the elements? Nanotechnology 21(30):300201. https://doi.org/10.1088/0957-4484/21/30/300201

    Article  PubMed  Google Scholar 

  2. Egbedina AO, Bolade OP, Ewuzie U, Lima EC (2022) Emerging trends in the application of carbon-based materials: a review. J Environ Chem Eng 10(2):107260. https://doi.org/10.1016/j.jece.2022.107260

    Article  CAS  Google Scholar 

  3. Kumar P, Dua S, Kaur R, Kumar M, Bhatt G (2022) A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Adv 12(8):4714–4759. https://doi.org/10.1039/D1RA08452F

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Huang S, Li W, Han P, Zhou X, Cheng J, Wen H, Xue W (2019) Carbon quantum dots: synthesis, properties, and sensing applications as a potential clinical analytical method. Anal Methods 11(17):2240–2258. https://doi.org/10.1039/C9AY00068B

    Article  CAS  Google Scholar 

  5. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Van Le Q, Jang HW, Shokouhimehr M (2020) Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv 10(26):15406–15429. https://doi.org/10.1039/D0RA00799D

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Li P, Liu S, Cao W, Zhang G, Yang X, Gong X, Xing X (2020) Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms. Chem Commun 56(15):2316–2319. https://doi.org/10.1039/C9CC09223D

    Article  CAS  Google Scholar 

  7. Tungare K, Bhori M, Racherla KS, Sawant S (2020) Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera. 3 Biotech. 10(12):540. https://doi.org/10.1007/s13205-020-02518-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nammahachak N, Aup-Ngoen KK, Asanithi P, Horpratum M, Chuangchote S, Ratanaphan S, Surareungchai W (2022) Hydrothermal synthesis of carbon quantum dots with size tunability via heterogeneous nucleation. RSC Adv 12(49):31729–31733. https://doi.org/10.1039/D2RA05989D

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Sharma VD, Kansay V, Chandan G, Bhatia A, Kumar N, Chakrabarti S, Bera MK (2023) Solid-state fluorescence based on nitrogen and calcium co-doped carbon quantum dots@ bioplastic composites for applications in optical displays and light-emitting diodes. Carbon 201:972–983. https://doi.org/10.3389/fmats.2022.906838

    Article  CAS  Google Scholar 

  10. Sharma VD, Kansay V, Chandan G, Bhatia A, Kumar N, Chakrabarti S, Bera MK (2023) Solid-state fluorescence based on nitrogen and calcium co-doped carbon quantum dots@ bioplastic composites for applications in optical displays and light-emitting diodes. Carbon. 201:972–983. https://doi.org/10.1016/j.carbon.2022.10.007

    Article  CAS  Google Scholar 

  11. Zhang Y, Xiao J, Zhuo P, Yin H, Fan Y, Liu X, Chen Z (2019) Carbon dots exhibiting concentration-dependent full-visible-spectrum emission for light-emitting diode applications. ACS Appl Mater Interfaces. 11(49):46054–46061. https://doi.org/10.1021/acsami.9b14472

    Article  CAS  PubMed  Google Scholar 

  12. Ghasedi A, Koushki E, Baedi J (2022) Cation–π aggregation-induced white emission of moisture-resistant carbon quantum dots: a comprehensive spectroscopic study. Phys Chem Chem Phys 24(38):23802–23816. https://doi.org/10.1039/D2CP03388G

    Article  CAS  PubMed  Google Scholar 

  13. Tang J, Zhang J, Zhang Y, Xiao Y, Shi Y, Chen Y, Xu W (2019) Influence of group modification at the edges of carbon quantum dots on fluorescent emission. Nanoscale Res Lett 14:1–10. https://doi.org/10.1186/s11671-019-3079-7

    Article  CAS  ADS  Google Scholar 

  14. Lai S, Jin Y, Shi L, Zhou R, Zhou Y, An D (2020) Mechanisms behind excitation-and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale 12(2):591–601. https://doi.org/10.1039/C9NR08461D

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Li W, Yin L, Liu Y, Guo H, Lai J, Wu M (2020) Full-color fluorescent carbon quantum dots. Sci Adv. https://doi.org/10.1126/sciadv.abb6772

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu M, Zhan J, Geng B, He P, Wu K, Wang L, Pan D (2017) Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale. 9(35):13195–13202. https://doi.org/10.1039/C7NR04718E

    Article  CAS  PubMed  Google Scholar 

  17. Ding H, LiX -H, Chen X-B, Wei J-S, Li X-B, Xiong H-M (2020) Surface states of carbon dots and their influences on luminescence. J Appl Phys. https://doi.org/10.1063/15143819

    Article  Google Scholar 

  18. Sun M, Liang C, Tian Z, Ushakova E, Li D, Xing G, Qu S, Rogach AL (2019) Realization of the photostable intrinsic core emission from carbon dots through surface deoxidation by ultraviolet irradiation. J Phys Chem Lett. 10(11):3094–3100. https://doi.org/10.1021/acs.jpclett.9b00842

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  ADS  Google Scholar 

  20. Yoo HJ, Kwak BE, Kim DH (2020) Interparticle distance as a key factor for controlling the dual-emission properties of carbon dots. Phys Chem Chem Phys 22:20227–20237. https://doi.org/10.1039/D0CP02120B

    Article  CAS  PubMed  Google Scholar 

  21. Liang J, Yang B, Zhong C-Y, Zhang J, He J, Chen Y, Liu Z-Q (2020) A rapid in situ synthesis of wide-spectrum CD@ BaCl 2 phosphors via anti-solvent recrystallization for white LEDs. Inorgan Chem Front 7(24):4845–4853. https://doi.org/10.1039/D0QI01054E

    Article  CAS  Google Scholar 

  22. Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  23. Wu Y, Zhang H, Pan A, Wang Q, Zhang Y, Zhou G, He L (2019) White light emitting melamine formaldehyde microspheres through polymer mediated aggregation and encapsulation of graphene quantum dots. Adv Sci 6(2):1801432. https://doi.org/10.1002/advs.201801432

    Article  CAS  Google Scholar 

  24. Yang L, Qin A, Chen S, Liao L, Qin J, Zhang K (2018) Manganese(ii) enhanced fluorescent nitrogen-doped graphene quantum dots: a facile and efficient synthesis and their applications for bioimaging and detection of Hg2+ ions. RSC Adv 8:5902–5911. https://doi.org/10.1039/C7RA12133D

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Nair AN, Chava VSN, Bose S, Zheng T, Pilla S, Sreenivasan ST (2020) In situ doping-enabled metal and nonmetal codoping in graphene quantum dots: synthesis and application for contaminant sensing. ACS Sustain Chem Eng 8:16565–16576. https://doi.org/10.1021/acssuschemeng.0c05789

    Article  CAS  Google Scholar 

  26. Yang G, Wu C, Luo X, Liu X, Gao Y, Wu P, Cai C, Saavedra SS (2018) Exploring the emissive states of heteroatom-doped graphene quantum dots. J Phys Chem C. 122(11):6483–6492. https://doi.org/10.1021/acs.jpcc.8b01385

    Article  CAS  Google Scholar 

  27. Kou X, Jiang S, Park S-J, Meng L-Y (2020) A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Transact 49:6915–6938. https://doi.org/10.1039/D0DT01004A

    Article  CAS  Google Scholar 

  28. Alam A-M, Park B-Y, Ghouri Z, Park M, Yong K (2015) Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. https://doi.org/10.1039/C5GC00686D

    Article  Google Scholar 

  29. Sahu S, Behera B, Maitib TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837. https://doi.org/10.1039/C2CC33796G

    Article  CAS  Google Scholar 

  30. Kandi D, Mansingh S, Behera A, Parida K (2021) Calculation of relative fluorescence quantum yield and Urbach energy of colloidal CdS QDs in various easily accessible solvents. J Lumin 231:117792. https://doi.org/10.1016/j.jlumin.2020.117792

    Article  CAS  Google Scholar 

  31. Allahbakhsh A (2021) Nitrogen-doped graphene quantum dots hydrogels for highly efficient solar steam generation. Desalination 517:115264. https://doi.org/10.1016/j.desal.2021.115264

    Article  CAS  Google Scholar 

  32. Jung H, Sapner VS, Adhikari A, Sathe BR, Patel R (2022) Recent progress on carbon quantum dots based photocatalysis. Front Chem. https://doi.org/10.3389/fchem.2022.881495

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chong N, Smith K, Setti S, Ooi B (2013) Application of gold and silver colloidal nanoparticles for the surface-enhanced Raman spectrometric analysis of melamine and 4-aminobiphenyl. Int J Environm Technol Manag 16:3–20. https://doi.org/10.1504/IJETM.2013.050681

    Article  CAS  Google Scholar 

  34. Ding H, Wei J-S, Xiong HM (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6:13817–13823. https://doi.org/10.1039/C4NR04267K

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Liao Q, Li M, Hao R, Ai X, Zhang J, Wang Y (2007) Surface-enhanced Raman scattering and DFT computational studies of a cyanuric chloride derivative. Vibrat Spectroscopy. 44(2):351–356. https://doi.org/10.1016/j.vibspec.2007.03.001

    Article  CAS  Google Scholar 

  36. Moskovits M (1982) Surface selection rules. J Chem Phys 77(9):4408–4416. https://doi.org/10.1063/1.444442

    Article  CAS  ADS  Google Scholar 

  37. Suh JS, Moskovits M (1986) Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J Am Chem Soc 108:4711–4718. https://doi.org/10.1021/ja00276a005

    Article  CAS  Google Scholar 

  38. Moskovits M, Suh JS (1998) Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J Phys Chem 88(23):5526–5530. https://doi.org/10.1021/j150667a013

    Article  Google Scholar 

  39. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Khajavi Z, Ghasedi B, Koushki E (2023) On the role of UV-generated ROS in the desorption of cephalexin from CQDs-based drug-loadable platform. J Photochem Photobiol, A 442:114813. https://doi.org/10.1016/j.jphotochem.2023.114813

    Article  CAS  Google Scholar 

  41. Brühl L, Unbehend G (2021) Precise color communication by determination of the colorof vegetable oils and fats in the CIELAB 1976 (L*a*b*) colorspace. Eur J Lipid Sci Technol 123:2000329. https://doi.org/10.1002/ejlt.202000329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FM: conceptualization, methodology, validation, investigation, data curation, visualization, writing-original draft, writing-review and editing. AG: conceptualization, methodology, validation, investigation, data curation, visualization, writing-original draft, writing-review and editing. BM: validation, data curation, resources, writing-review and editing. EK: validation, investigation, supervision, data curation, writing-original draft, visualization, writing-review and editing, project administration.

Corresponding authors

Correspondence to Behnam Mahdavi or Ehsan Koushki.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeri, F., Ghasedi, A., Mahdavi, B. et al. The effect of in-situ cellulosic matrix on the photophysical properties of white emissive CQDs. Carbon Lett. 34, 399–406 (2024). https://doi.org/10.1007/s42823-023-00652-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00652-7

Keywords

Navigation