Skip to main content
Log in

Influence of Substrate Properties on Communities of Arbuscular Mycorrhizal Fungi Isolated from Agroecosystems in Peru

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are an essential component of agroecosystems as they provide multiple benefits to crops. However, they are critically affected by physical and chemical soil characteristics. Understanding the changes in abundance and composition of AMF communities during the multiplying process is important to optimize the inoculum generation methods and improve agricultural production and sustainability. Four substrates with different soil physicochemical properties: Soil + Sand (So + Sa), Soil + Vermiculite (So + Ve), Sand + Vermiculite (Sa + Ve), Soil + Sand + Vermiculite (So + Sa + Ve) were assessed to multiply three consortia of AMF from Coffea arabica and Plukenetia volubilis rhizospheric soil from San Martín. Fifteen species of AMF (ten genera and seven families) were identified. The species composition of the AMF community varied among the substrates; however, there were no differences in species richness. Substrate type significantly affected AMF spore production and mycorrhizal colonization (P ≤ 0.05). The So + Sa + Ve substrate presented a higher number of spores and percentage of colonization than the rest of the substrates. Paraglomus peruvianum was the most abundant species in the substrates So + Sa and So + Ve, while Rhizoglomus dunense was in the substrates Sa + Ve and So + Sa + Se. The properties of the substrates (OM content, pH, CaCO3, and EC) significantly modified the structure of the AMF community, allowing the occurrence of particular species in certain substrates. The composition of the substrates and their physicochemical characteristics influenced the composition and structure of the AMF community. For this reason, it should be considered when analyzing and multiplying the community of AMF present in agroecosystems, for use and conservation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera P, Cumming J, Oehl F, Cornejo P, Borie F (2015) Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation. In: Panda SK, Baluška F (eds) Aluminum Stress Adaptation in Plants. Springer International Publishing Cham pp 203–228

    Chapter  Google Scholar 

  • Ali M, Azam M, Adnan M (2015) Influence of potassium humate on am contamination and rhizospheric mycoflora of rice (Oryza sativa L). J Biol Agric Healthcare 5:192–195

    Google Scholar 

  • Arocha-Rodríguez MC, Pérez-Ortega E, Fernández-Suárez K, Haesaert G (2019) Efecto del pH del medio de cultivo en el crecimiento presimbiótico de Rhizoglomus irregulare. Cultivos Tropicales 40:2

    Google Scholar 

  • Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095. https://doi.org/10.3389/fmicb.2016.01095

    Article  PubMed  PubMed Central  Google Scholar 

  • Avio L, Njeru EM, Oehl F, Turrini A, Bocci G, Bàrberi P, Giovannetti M, Sbrana C (2020) Small-scale soil heterogeneity affects the distribution of arbuscular mycorrhizal fungal species in a hot-spot field in a Mediterranean site. Appl Soil Ecol 154:103631. https://doi.org/10.1016/j.apsoil.2020.103631

    Article  Google Scholar 

  • Baltruschat H, Santos VM, da Silva DKA, Schellenberg I, Deubel A, Sieverding E, Oehl F (2019) Unexpectedly high diversity of arbuscular mycorrhizal fungi in fertile Chernozem croplands in Central Europe. CATENA 182:104135. https://doi.org/10.1016/j.catena.2019.104135

    Article  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra.

  • Basiru S, Hijri M (2022) Does commercial inoculation promote arbuscular mycorrhizal fungi invasion? Microorganisms 10:404. https://doi.org/10.3390/microorganisms10020404

    Article  PubMed  PubMed Central  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

    Article  PubMed  PubMed Central  Google Scholar 

  • Błaszkowski J, Furrazola E, Chwat G, Góralska A, Lukács AF, Kovács GM (2015) Three new arbuscular mycorrhizal Diversispora species in Glomeromycota. Mycol Progress 14:105. https://doi.org/10.1007/s11557-015-1122-3

    Article  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. https://doi.org/10.1007/s11104-008-9877-9

    Article  CAS  Google Scholar 

  • Callejas-Ruiz BA, Castillo-González AM, Colinas-León MT, del González-Chávez M, C, Pineda-Pineda J, Valdez-Aguilar LA, (2009) Sustratos y hongos micorrízicos arbusculares en la producción de nochebuena. Revista Chapingo Serie Horticultura 15:57–66

    Article  Google Scholar 

  • Chaurasia B, Hare PK (2005) Hordeum vulgare: a suitable host for mass production of arbuscular mycorrhizal fungi from natural soil. Appl Ecol Environ Res 4:45–53

  • Chellappan P, Christy SAA, Mahadevan A (2002) Multiplication of arbuscular mycorrhizal fungi on roots. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in Mycorrhizal Studies. Springer, Netherlands, Dordrecht, pp 285–297

    Chapter  Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228. https://doi.org/10.1890/080216

    Article  Google Scholar 

  • Coelho IR, Pedone-Bonfim MV, Silva FS, Maia LC (2014) Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer. Braz J Microbiol 45:1173–1178. https://doi.org/10.1590/S1517-83822014000400007

    Article  CAS  PubMed  Google Scholar 

  • Corazon Guivin M, Vallejos-Tapullima A, de la Sota RA, Vallejos-Torres G, Ruíz-Sánchez M, Santos V, Silva G, Oehl F (2022) Acaulospora flavopapillosa, a new fungus in the Glomeromycetes from a coffee plantation in Peru, with an updated key for the identification of Acaulosporaceae species. J Appl Bot Food Qual 95:6–16. https://doi.org/10.5073/JABFQ.2022.095.002

    Article  Google Scholar 

  • Corazon-Guivin MA, Cerne Mendoza A, Guerrero-Abad JC, Vallejos-Tapullima A, Carballar-Hernández S, Alves da Silva G, Oehl F (2019a) Funneliglomus, gen. nov., and Funneliglomus sanmartinensis, a new arbuscular mycorrhizal fungus from the Amazonia region in Peru. Sydowia 71: 17–24. https://doi.org/10.12905/0380.sydowia71-2019-0017

  • Corazon-Guivin MA, Cerna-Mendoza A, Guerrero-Abad JC, Vallejos-Tapullima A, Carballar-Hernández S, da Silva GA, Oehl F (2019b) Nanoglomus plukenetiae, a new fungus from Peru, and a key to small-spored Glomeraceae species, including three new genera in the “Dominikia complex/clades”. Mycol Prog 18:1395–1409. https://doi.org/10.1007/s11557-019-01522-1

  • Corazon-Guivin MA, Cerna-Mendoza A, Guerrero-Abad JC, Vallejos-Tapullima A, Silva GA, Oehl F (2019c) Acaulospora aspera, a new fungal species in the Glomeromycetes from rhizosphere soils of the inka nut (Plukenetia volubilis L.) in Peru. J Appl Bot Food Qual 92:250–257. https://doi.org/10.5073/JABFQ.2019.092.035

  • Corazon-Guivin MA, Cerna-Mendoza A, Guerrero-Abad JC, Vallejos-Tapullima A, Carballar-Hernández S, da Silva GA, Oehl F (2019d) Microkamienskia gen. nov. and Microkamienskia peruviana, a new arbuscular mycorrhizal fungus from Western Amazonia. Nova Hedwigia 109:355–368. https://doi.org/10.1127/nova_hedwigia/2019/0551

    Article  Google Scholar 

  • Corazon-Guivin MA, Vallejos-Tapullima A, De La Sota-Ricaldi AM, Cerna-Mendoza A, Guerrero-Abad JC, Santos V, Alves Da Silva G, Oehl F (2021) Acaulospora flava, a new arbuscular mycorrhizal fungus from Coffea arabica and Plukenetia volubilis plantations at the sources of the Amazon river in Peru. J Appl Bot Food Qual 94:116–123. https://doi.org/10.5073/JABFQ.2021.094.014

    Article  CAS  Google Scholar 

  • Corazon-Guivin MA, Cerna-Mendoza A, Guerrero-Abad JC, Vallejos-Tapullima A, Vallejos-Torres G, de la Sota-Ricaldi AM, Santos VM, da Silva GA, Oehl F (2020) Paraglomus occidentale, a new arbuscular mycorrhizal fungus from the sources of the Amazon river in Peru, with a key to the Paraglomeromycetes species. Sydowia 72: 85–94. https://doi.org/10.12905/0380.sydowia72-2020-0085

  • Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu D-G, Declerck S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Fortin JA, Strullu D-G (eds) In Vitro Culture of Mycorrhizas. Springer-Verlag, Berlin/Heidelberg, pp 341–375

    Chapter  Google Scholar 

  • Esquivel-Quispe R, Quispe-Ochoa JO, Hernández-Cuevas LV (2021) Experiencias sobre la propagación y efectividad de los hongos micorrizógenos arbusculares en Latinoamérica. J Selva Andina Biosphere 9:99–110

    Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51. https://doi.org/10.1016/j.plantsci.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  • Frey SD (2019) Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331

    Article  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A Review Agron Sustain Dev 30:581–599. https://doi.org/10.1051/agro/2009054

    Article  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 46:235–244. https://doi.org/10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  • Geoffroy A, Sanguin H, Galiana A, Bâ A (2017) Molecular characterization of arbuscular mycorrhizal fungi in an agroforestry system reveals the predominance of Funneliformis spp. associated with Colocasia esculenta and Pterocarpus officinalis adult trees and seedlings. Front Microbiol 8:1426. https://doi.org/10.3389/fmicb.2017.01426

  • Ghorbani M, Khara J, Abbaspour N (2012) Effects of season and soil conditions on the mycorrhizal status and colonization of seven grass species. Iran J Plant Physiol 2:387–393

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  • Gryndler M, Hršelová H, Cajthaml T, Havránková M, Řezáčová V, Gryndlerová H, Larsen J (2009) Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza 19:255–266. https://doi.org/10.1007/s00572-008-0217-y

    Article  PubMed  Google Scholar 

  • Guillén A, Serrano-Tamay FJ, Peris JB, Arrillaga I (2020) Diversispora valentina (Diversisporaceae), a new species of arbuscular mycorrhizal fungi from the Mediterranean sand dunes of Spain. Phytotaxa 468:62–74. https://doi.org/10.11646/phytotaxa.468.1.3

  • He F, Tang M, Zhong SL, Yang R, Huang L, Zhang HQ (2016) Effects of soil and climatic factors on arbuscular mycorrhizal fungi in rhizosphere soil under Robinia pseudoacacia in the Loess Plateau, China: soil and climatic factors on AMF in black locust soil. Eur J Soil Sci 67:847–856. https://doi.org/10.1111/ejss.12381

    Article  CAS  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480. https://doi.org/10.1093/jxb/erp144

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Farnhan Royal, Commonwealth Agricultural Bureau, Farnham, England

  • IJdo M, Cranenbrouck S, Declerck S, (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16. https://doi.org/10.1007/s00572-010-0337-z

    Article  CAS  PubMed  Google Scholar 

  • Jamiołkowska A, Księżniak A, Gałązka A, Hetman B, Kopacki M, Skwaryło-Bednarz B (2018) Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review. IntAgrophysics 32:133–140. https://doi.org/10.1515/intag-2016-0090

    Article  CAS  Google Scholar 

  • Jerbi M, Labidi S, Bahri BA, Laruelle F, Tisserant B, Ben Jeddi F, Lounès-Hadj Sahraoui A (2021) Soil properties and climate affect arbuscular mycorrhizal fungi and soil microbial communities in Mediterranean rainfed cereal cropping systems. Pedobiologia 87–88:150748. https://doi.org/10.1016/j.pedobi.2021.150748

    Article  Google Scholar 

  • Jiménez-Martínez A, González-Chávez MCA, Gutiérrez-Castorena MC, Lara-Hernández ME, García-Cue JL (2014) Producción de inóculo micorrízico de Gigaspora gigantea en mezclas de sustratos con diferente tamaño de partícula. Agrociencia 48:239–254

    Google Scholar 

  • Kadian N, Yadav K, Jangra E, Aggarwal A (2019) Influence of host plant and rice straw as substrate on mass multiplication of arbuscular mycorrhizal fungi for large-scale agricultural application. Int J Recycl Org Waste Agricult 8:21–26. https://doi.org/10.1007/s40093-019-0255-9

    Article  Google Scholar 

  • Kaushish S, Kumar A, Aggarwal A (2011) Influence of hosts and substrates on mass multiplication of Glomus mosseae. Afr J of Agric Res 6:2971–2977. https://doi.org/10.5897/AJAR09.481

    Article  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303. https://doi.org/10.1016/j.soilbio.2011.07.012

    Article  CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota : one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. https://doi.org/10.1111/j.1469-8137.2009.02835.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Saxena AK (2017) Conventional methods for mass multiplication of AMF. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer International Publishing, Cham, pp 287–300

    Chapter  Google Scholar 

  • Leal PL, Siqueira JO, Stürmer SL (2013) Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Appl Soil Ecol 71:72–80. https://doi.org/10.1016/j.apsoil.2013.05.010

    Article  Google Scholar 

  • Lebeuf R, Alexandrova A, Mendoza A, Corazon-Guivin M, Silva G, de la Sota-Ricaldi A, Dima B, Fryssouli V, Gkilas M, Guerrero-Abad J, Lamoureux Y, Landry J, Mesic A, Morozova O, Noordeloos M, Oehl F, Paul A, Pham T, Polemis E, Haelewaters D… (2021) Fungal systematics and evolution: FUSE 8. Sydowia 74:193–249. https://doi.org/10.12905/0380.sydowia74-2021-0193

  • Liu R, Wang F (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza 13:123–127. https://doi.org/10.1007/s00572-002-0207-4

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang H, Wang D, Guo X, Yang T, Xiang X, Walder F, Chu F (2021) Differential responses of arbuscular mycorrhizal fungal communities to long-term fertilization in the wheat rhizosphere and root endosphere. Appl Environ Microbiol 87:1–13. https://doi.org/10.1128/AEM.00349-21

    Article  Google Scholar 

  • Melo CD, Walker C, Krüger C, Borges PAV, Luna S, Mendonça D, Fonseca HMAC, Machado AC (2019) Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Ann Microbiol 69:1309–1327. https://doi.org/10.1007/s13213-019-01535-x

    Article  CAS  Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520. https://doi.org/10.1099/00221287-27-3-509

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sýkorová Z, Błaszkowski J, Sánchez Castro I, Coyne DL, Tchabi A, Lawouin L, Hountondji FCC, da Silva GA (2011) Acaulospora sieverdingii, an ecologically diverse new fungus in the Glomeromycota, described from lowland temperate Europe and tropical West Africa. J Appl Bot Food Qual 84:47–53

    CAS  Google Scholar 

  • Oehl F, Laczko E, Oberholzer H-R, Jansa J, Egli S (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soils 53:777–797. https://doi.org/10.1007/s00374-017-1217-x

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. https://doi.org/10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Pontes JS, Oehl F, Marinho F, Coyne D, da Silva DKA, Yano-Melo AM, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in Brazil’s Caatinga and experimental agroecosystems. Biotropica 49:413–427. https://doi.org/10.1111/btp.12436

    Article  Google Scholar 

  • Quilliam RS, Hodge A, Jones DL (2010) Sporulation of arbuscular mycorrhizal fungi in organic-rich patches following host excision. Appl Soil Ecol 46:247–250. https://doi.org/10.1016/j.apsoil.2010.08.005

    Article  Google Scholar 

  • Quiñones-Aguilar EE, Montoya-Martínez AC, Rincón-Enriquez G, Lobit P, López-Pérez L (2016) Effectiveness of native arbuscular mycorrhizal consortia on the growth of Agave inaequidens. J Soil Sci Plant Nutr 16:1052–1064. https://doi.org/10.4067/S0718-95162016005000077

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in https://www.R-project.org/ (Accessed 06.01.22)

  • Saranya K, Kumutha K (2011) Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum. Int J of Agri Scie 3:71–77. https://doi.org/10.9735/0975-3710.3.1.71-77

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y, Yang B (2008) Community structure of arbuscular mycorrhizal fungi in saline alkaline soil of northwest China. Available in: https://harvest.usask.ca/handle/10388/9321 (Accessed 20.01.22)

  • Sheng M, Lalande R, Hamel C, Ziadi N (2013) Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of Eastern Canada. Plant Soil 369:599–613. https://doi.org/10.1007/s11104-013-1585-4

    Article  CAS  Google Scholar 

  • Sheng M, Chen X, Zhang X, Hamel C, Cui X, Chen J, Chen H, Tang M (2017) Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties. Sci Total Environ 599–600:273–283. https://doi.org/10.1016/j.scitotenv.2017.04.199

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Kataoka R (2011) Mycorrhizal inoculants: progress in inoculant production technology. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and Microbial Technology. Springer, New York, New York, NY, pp 489–506

    Chapter  Google Scholar 

  • Sieverding E, da Silva GA, Berndt R, Oehl F (2015) Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129:373–386. https://doi.org/10.5248/129.373

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, USA, New York

    Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13. https://doi.org/10.3852/11-229

    Article  PubMed  Google Scholar 

  • Song J, Liang JF, Mehrabi-Koushki M, Krisai-Greihuber I, Ali B... 2019. Fungal systematics and evolution: FUSE 5. Sydowia 71:145–241. https://doi.org/10.12905/0380.sydowia71-2019-0141

  • Sugiura Y, Akiyama R, Tanaka S, Yano K, Kameoka H, Marui S, Saito M, Kawaguchi M, Akiyama K, Saito K (2020) Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA 117:25779–25788. https://doi.org/10.1073/pnas.2006948117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Hashimoto K, Kobayashi Y, Yano K, Maeda T, Kameoka H, Ezawa T, Saito K, Akiyama K, Kawaguchi M (2022) Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Commun Biol 5:43. https://doi.org/10.1038/s42003-021-02967-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandel M, Mahatma L (2019) Standardization of mass multiplication protocol for arbuscular mycorrhizal fungi isolated from the South Gujarat. Advances in Life Sciences 5:9681–9685

    Google Scholar 

  • Torres-Arias Y, Fors RO, Nobre C, Gómez EF, Berbara RLL (2017) Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions. Braz J Microbiol 48:87–94. https://doi.org/10.1016/j.bjm.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  • Van Aarle IM, Olsson PA, Söderström B (2002) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol 155:173–182. https://doi.org/10.1046/j.1469-8137.2002.00439.x

    Article  PubMed  Google Scholar 

  • Vargas CD, Willems MC. (2017) Línea de base del sector café en el Perú. Programa de las Naciones Unidad para el Desarrollo, PNUD, Lima.

  • Verma N, Chaturvedi S, Sharma AK (2008) Mass multiplication of arbuscular mycorrhizal fungi using soil less substrate. Mycorrhiza News 20:11–15

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhu F, Kakuda Y (2018) Sacha inchi (Plukenetia volubilis L.): nutritional composition, biological activity, and uses. Food Chemi 265:316–328. https://doi.org/10.1016/j.foodchem.2018.05.055

    Article  CAS  Google Scholar 

  • Wang J, Wang GG, Zhang B, Yuan Z, Fu Z, Yuan Y, Zhu L, Ma S, Zhang J (2019) Arbuscular mycorrhizal fungi associated with tree species in a planted forest of Eastern China. Forests 10:424. https://doi.org/10.3390/f10050424

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef A, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ1, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere 11:1060–1456. https://doi.org/10.5943/mycosphere/11/1/8

  • Yang W, Gu S, Xin Y, Bello A, Sun W, Xu X (2018) Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front Microbiol 9:169. https://doi.org/10.3389/fmicb.2018.00169

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Ling N, Guo J, Wang M, Guo S, Shen Q (2016) Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF) community composition were correlated with organic matter composition in maize rhizosphere soil. Front Microbiol 7:1840. https://doi.org/10.3389/fmicb.2016.01840

Download references

Funding

The study was supported by the Programa Nacional de Estudios de Investigación Científica y Estudios Avanzados (ProCiencia), a unit of the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (Concytec, Perú), through the project SUBVENTION AGREEMENT N° 163–2020-FONDECYT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mike Anderson Corazon-Guivin or Santos Carballar-Hernández.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corazon-Guivin, M.A., Vallejos-Tapullima, A., Rengifo-Del Aguila, S. et al. Influence of Substrate Properties on Communities of Arbuscular Mycorrhizal Fungi Isolated from Agroecosystems in Peru. J Soil Sci Plant Nutr 22, 4784–4797 (2022). https://doi.org/10.1007/s42729-022-00960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-022-00960-3

Keywords

Navigation