Skip to main content
Log in

Antioxidant activities of Eragrostis amabilis (L.) Wight. Arn. And Eragrostis pilosa (L.) Beauve

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Previous studies revealed the biochemical profile, in vitro toxicity, and cytotoxic activity of Eragrostis amabilis (L.) Wight. Arn. and Eragrostis pilosa (L.) Beauve and the functional constituents of E. amabilis and E. pilosa using FT-IR. But there is no report on antioxidant activities of E. amabilis E. pilosa aerial and underground parts. With this background, the present study was undertaken to reveal the antioxidant profile of Eragrostis amabilis (L.) Wight. Arn. and Eragrostis pilosa (L.) Beauv. aerial and underground parts using the DPPH, ABTS, FRAP, SOD, metal chelating, and nitric oxide scavenging assays. A dose-dependent DPPH, ABTS, FRAP, SOD, metal chelating, and Nitric Oxide radical scavenging activity was observed in all the studied extracts of E. amabilis and E. pilosa. The aerial parts of E. pilosa and E. amabilis various extracts revealed the maximum antioxidant activities. The correlation values of total antioxidant capacity obtained by these assays were positive at p < 0.01 and (2-tailed) p < 0.05 (1-tailed) significance level, indicating that the values of antioxidant capacities assayed by NO2 assay, DPPH assay, ABTS assay, and SOD assay were highly correlative. The high rate of antioxidant and free radical scavenging potential of E. pilosa and E. amabilis are correlated with their high phenolic content occurrence and identified as a good and valuable alternative source of natural antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiza Q, Farhan S, Muhammad TN, Abdullah IH, Bushra N, Azmat UK, Muhammad A, Huma BUA, Muhammad I (2018) Exploring the phytochemical profile of green grasses with special reference to antioxidant properties. Int J Food Prop 21(1):2566–2577. https://doi.org/10.1080/10942912.2018.1540990

    Article  CAS  Google Scholar 

  • Ankita C, Bhavinee D, Parni N, Neetu K, Rao B (2017) Phytochemical screening, in vitro anti quorum sensing activity and antioxidant activity of extracts of Plumeria alba, Pisonia alba and Cynodon dactylon. J Appl Pharm Sci 02162–166. https://doi.org/10.7324/JAPS.2017.70222

  • Ashok SA (2011) Phytochemical and pharmacological screening of Wheatgrass Juice (Triticum aestivum L.). Int J Pharm Sci Rev Res 9:159–164

    Google Scholar 

  • Avani P, Amit P, Amit P, Patel NM (2010) Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res 2(3):152–158. https://doi.org/10.4103/0974-8490.65509

    Article  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

    Article  CAS  Google Scholar 

  • Barroso RP, Berlim LS, Ito AS, Costa-Filho AJ (2019) In vitro antioxidant properties of golden grass (Syngonanthus nitens) by electron paramagnetic resonance. Food Sci Nutr 7(4):1353–1360. https://doi.org/10.1002/fsn3.969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir A, Sultana B, Akhtar FH, Munir A, Amjad M, Hassan O (2012) Investigation on the antioxidant activity of Dheela Grass (Cyperus rotundus). Afr J Basic Appl 4(1):01–06

    CAS  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 29:1199–1200. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  Google Scholar 

  • Carranza MSS, Linis VC, Ragasa CY, Tan MCS (2019) Chemical constituents and antioxidant potentials of seven philippine mosses malaysian. J Anal Sci 23(6):950–962. https://doi.org/10.17576/mjas-2019-2306-04

    Article  Google Scholar 

  • Chowdhury T, Sulthana N, Al-Mamun M, Absar N, Hasanuzzaman M (2017) From a study on the nutrients and secondary metabolites composition of two varieties of Cynodon available in Bangladesh and their anti-oxidant activities. Asian J Plant Sci Res 7(4):9–17

    CAS  Google Scholar 

  • Ebrahimzadeh MA, Pourmorad F, Hafezi S (2008) Antioxidant activities of iranian Corn Silk. Turkish J Biol 32:43–49

    CAS  Google Scholar 

  • El-Jemli M, Kamal R, Marmouzi I, Zerrouki A, Cherrah Y, Alaoui K (2016) Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv Pharmacol Sci. https://doi.org/10.1155/2016/6392656

  • Ferdous UT, Yusof ZNB (2021) Medicinal prospects of Antioxidants from Algal sources in Cancer Therapy. Front Pharmacol 12:593116. https://doi.org/10.3389/fphar.2021.593116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebashe F, Aremu AO, Gruz J, Finnie JF, Van SJ (2020) Phytochemical profiles and antioxidant activity of grasses used in south african Traditional Medicine. Plants 9(3):371. https://doi.org/10.3390/plants9030371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahtori D, Chaturvedi P (2019) Bryophytes: A Potential Source of Antioxidants. In M. S. Sabovljević, & A. D. Sabovljević (Eds.), Bryophytes. IntechOpen. https://doi.org/10.5772/intechopen.84587

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584. https://doi.org/10.1016/s0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

  • Janakiraman N, Johnson M (2015) In Vitro antioxidant Properties of Natural Products isolated from selected species of Cyathea. J Clin Nephrol Res 2(2):1027

    Google Scholar 

  • Janakiraman N, Johnson M, Almaida RS, Coutinho HDM (2022) In vitro antioxidant potential of Abrus percatorius L. and Asystasia gangetica (L.) T. Anderson. Lett Appl Nanobiosci 11(4):4071–4079

    Google Scholar 

  • Janet Rani R, Sundar SK, Parthipan B, Johnson M (2013) Evaluation of Antioxidant Potential of Selected Seaweeds from South East Coast of India. Inventi Rapid Ethnopharmacology 2013; 2(1)

  • Johnson M, Gowtham J, Sivaraman A, Janakiraman N, Narayani M (2014) Antioxidant, Larvicidal, and cytotoxic studies on Asplenium aethiopicum (burm. f.) Becherer. Int Sch Res Notices Article ID 876170:6pages. https://doi.org/10.1155/2014/876170

    Article  Google Scholar 

  • Johnson M, Janakiraman N, Murugesan S (2015) Studies on antioxidant and phytochemical profiles of Leptochloa uniflora Hochst. Int Biol Biomed J Autumn 1(4):146–156

    Google Scholar 

  • Johnson M, Janakiraman N, Murugesan S (2015) Studies on antioxidant and phytochemical profiles of Leptochloa uniflora Hochst. Int Biol Biomed J Autumn 1(4):146–156

    Google Scholar 

  • Johnson M, Maharaja P, Janakiraman N, Adaikala Raj G, Menezes IRA, da Costa JGM, Verde LCL, Coutinho HDM (2018) Pancratium triflorum Roxb. (Amaryllidaceae) and Molineria trichocarpa (Wight) N.P. Balakr (Hypoxidaceae): cytotoxic and antioxidant activities. Food Chem Toxicol 119:290–295

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Asha Kanimozhi S, Renisheya Joy Jeba Malar T, Shibila T, Freitas PR, Tintino SR, Menezes IRA, da Costa JGM, Coutinho HDM (2019) The antioxidative effects of bioactive products from Sargassum polycystum C.Agardh and Sargassum duplicatum J. Agardh against inflammation and other pathological issues. Complement Ther Med 46:19–23

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Xavier Madona C, Almeida RS, Martins N, Coutinho HDM (2020) Vitro toxicity, antioxidant, anti-inflammatory and antidiabetic potential of Sphaerostephanos unitus (L.) Holttum. Antibiotics 9:333. https://doi.org/10.3390/antibiotics9060333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johri S, Khan N (2017) In vitro antioxidant and antihaemolytic potential of Triticum aestivum Grass. Int J Complement Alt Med 9(5):00310. https://doi.org/10.15406/ijcam.2017.09.00310

    Article  Google Scholar 

  • Kusmardiyani S, Fitria A, Irda F (2016) Antioxidant profile and phytochemical content of three kinds of Lemon Grass grown in West Java-Indonesia. Asian J Pharm Clin Res 9(4):381–385

    Google Scholar 

  • Manivannan V, Johnson M, Carolina A, Araújo P, Freitas HC (2022) Evaluation of antioxidant properties of Tectaria paradoxa (Fée.) Sledge and Bolbitis appendiculata (Willd.) K. Iwats Anales de Biología. 44:31–41. https://doi.org/10.6018/analesbio.44.04

  • Na CS, Lee MJ, Hong SS, Choi YH (2017) Antioxidant and Neuro protective activity of the aerial parts of seven Eragrostis species and bioactive compounds from E. japonica. Article Records of Natural Products 12(1):101–106. https://doi.org/10.25135/rnp.05.17.04.070

    Article  CAS  Google Scholar 

  • Negm W, Abo El-Seoud K, Kabbash A, El-Aasr M (2020) Investigation of the Biological Activity some Gymnosperm plants Belong to Cycadales Order. J Adv Med Pharm Res 1(1):9–13. https://doi.org/10.21608/jampr.2020.23512.1002

    Article  Google Scholar 

  • Ngo TN, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV (2017) Impact of different extraction solvents on Bioactive Compounds and antioxidant capacity from the Root of Salacia chinensis L. J Food Qual Article ID 9305047:8pages. https://doi.org/10.1155/2017/9305047

    Article  CAS  Google Scholar 

  • Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Co 46:849–864. https://doi.org/10.1016/S0006-291X(72)80218-3

    Article  CAS  Google Scholar 

  • Patipanee K, Muangpromb A, Sukrong S (2015) Antioxidant activity and DNA protective properties of rice grass juices. Sci Asia 41:119–129. https://doi.org/10.2306/scienceasia1513-1874.2015.41.119

    Article  CAS  Google Scholar 

  • Pulido R, Bravo L, Sauro-Calixto F (2000) Anit-oxidant activity of dietary polyphenols as determined by a modified ferric reducing/ antioxidant power assay. J Agric Food Chem 48:3396–3402. https://doi.org/10.1021/jf9913458

    Article  CAS  PubMed  Google Scholar 

  • Rajani M, Rasmirani R (2013) DPPH Free Radical Scavenging activity of some Leafy Vegetable sused by Tribals of Odisha, India. J Med Plants 1(1):21–27

    Google Scholar 

  • Sansone C, Brunet C (2020) Marine Algal Antioxidants. Antioxid (Basel) 9(3):206. https://doi.org/10.3390/antiox9030206PMID: 32131430; PMCID: PMC7139763

    Article  CAS  Google Scholar 

  • Semerci AB, İnceçayir D, Konca T, Tunca H, Tunç K (2020) Phenolic constituents, antioxidant and antimicrobial activities of methanolic extracts of some female cones of gymnosperm plant. Indian J Biochem Biophys 57:298–303

    CAS  Google Scholar 

  • Sivaraman A, Johnson M, Parimelazhagan T, Irudayaraj V (2013) Evaluation of antioxidant potential of ethanolic extracts of selected species of Sellaginella. Indian J Nat Prod Resour 4(3):238–244

    Google Scholar 

  • Soler RC, Espín JC, Wichers H (2000) An easy and fast test to compare total free radical scavenger capacity of food stuffs. Phytochem Anal 11(5). https://doi.org/10.1002/1099-1565(200009/10)11

  • Soong YY, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88(3):411–417. https://doi.org/10.1016/j.foodchem.2004.02.003

    Article  CAS  Google Scholar 

  • Sujatha M, Johnson M, Vanila D, Almeida RS, Countinho HDM (2022) Biochemical profile, in vitro toxicity and cytotoxic activity of Erogrostis amabilis (L.) Wight. Arn. And Erogrostis pilosa (L.) Beauv. Lett Appl Nanobiosci 11(2):3480–3487

    Google Scholar 

  • Sujatha M, Johnson M, Vanila D (2022) FT-IR Profile of Eragrostis amabilis (L.) Wight. Arn and Eragrostis pilosa (L.) Beauv. Romanian J. Biophys., Vol. 32, No. 3, P. 000–000, Bucharest, (Accepted)

  • Wolski GJ, Sadowska B, Fol M, Podsędek A, Kajszczak D, Kobylińska A (2021) Cytotoxicity, antimicrobial and antioxidant activities of mosses obtained from open habitats. PLoS ONE 16(9):e0257479. https://doi.org/10.1371/journal.pone.0257479 PMID: 34543304; PMCID: PMC8452054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu BJ, Chang SK (2008) Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J Food Sci 73(2):19–27. https://doi.org/10.1111/j.1750-3841.2007.00625.x

    Article  CAS  Google Scholar 

  • Zielinski AA, Haminiuk CW, Alberti A, Nogueira A, Demiate IM, Granato D (2014) A comparative study of the phenolic compounds and the in vitro antioxidant activity of different brazilian teas using multivariate statistical techniques. Food Res Int 60:246–254. https://doi.org/10.1016/j.foodres.2013.09.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Douglas Melo Coutinho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, S., alias Antonysamy, J.M., de Almeida, R.S. et al. Antioxidant activities of Eragrostis amabilis (L.) Wight. Arn. And Eragrostis pilosa (L.) Beauve. Vegetos 37, 125–132 (2024). https://doi.org/10.1007/s42535-022-00532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-022-00532-x

Keywords

Navigation