Skip to main content
Log in

Structural and optical properties of PVP/PEO blends doped with CNTs

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have garnered substantial interest as nanofillers for improving the properties of polymer composites due to their exceptional mechanical, electrical, and thermal characteristics. As nanofillers, carbon nanotubes can be incorporated into various materials to enhance their performance and functionality. In the present work, polymer blends of polyvinylpyrrolidone (PVP)/polyethylene oxide (PEO) doped with different concentrations of carbon nanotubes (CNTS 1%, 3%, and 5%) were fabricated by solution casting technique. X-ray diffraction studies reveal that the prepared polymer blend nanocomposites exhibit the semicrystalline nature. The intensity of the XRD peaks obtained for PVP/PEO blend at 19.3˚ is found to be reduced with an increase of CNTs concentration from 1 to 5%. The DSC thermograms show the glass transition temperatures (Tg) of PVP/PEO films doped with different concentrations of CNTs appeared in the region between 51–60 °C. The decrease in the degree of crystallinity for PVP/PEO doped with CNTs is noticed. The surface morphology and chemical composition of pure and CNTs doped PVP/PEO blends were examined by FESEM with EDS. The direct and indirect optical bandgap values for pure PVP/PEO blend are found to be 4.90 eV and 4.66 eV. With the increase of concentration of CNTs from 1 to 5%, the direct band gap ranges from 4.30 to 3.40 eV, while the indirect band gap decreases from 4.20 to 3.67 eV. The obtained results confirm that PVP/PEO doped with CNTs had promising applications in the optoelectronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy.

References

  1. S. Choudhary, Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids 121, 196–209 (2018). https://doi.org/10.1016/j.jpcs.2018.05.017

    Article  CAS  Google Scholar 

  2. Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. NarasimhaRao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Member. Sci. 454, 200–211 (2014). https://doi.org/10.1063/1.3643635

    Article  CAS  Google Scholar 

  3. M. Atta, M. Abdelhamied, A.M. Abdelreheem, M.R. Berber, Flexible methyl cellulose/polyaniline/silver composite films with enhanced linear and nonlinear optical properties. Polymers 13, 1225 (2021). https://doi.org/10.21203/rs.3.rs-270302/v1

    Article  CAS  Google Scholar 

  4. M. Tommalieh, Gamma radiation assisted modification on electrical properties of Polyvinyl Pyrrolidone/Polyethylene Oxide blend doped by copper oxide nanoparticles. Radiat. Phys. Chem. 179, 109236 (2021). https://doi.org/10.1016/j.radphyschem.2020.109236

    Article  CAS  Google Scholar 

  5. M.A. Hillmyer, F.S. Bates, Synthesis and characterization of model polyalkane-poly (ethylene oxide) block copolymers. Macromolecules 29, 6994–7002 (1996). https://doi.org/10.1021/ma960774t

    Article  CAS  Google Scholar 

  6. E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, H.M. Zidan, AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J. Mater. Sci. Mater. Electron. 30, 15521–15533 (2019). https://doi.org/10.1007/s10854-019-01929-2

    Article  CAS  Google Scholar 

  7. F. Gami, N. Algethami, H.M. Ragab, A. Rajah, A.E. Tarabiah, Structural, optical and electrical studies of chitosan/polyacrylamide blend filled with synthesized selenium nanoparticles. J. Mol. Struct. 1257, 132631 (2022). https://doi.org/10.1016/j.molstruc.2022.132631

    Article  CAS  Google Scholar 

  8. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  9. X.-D. Qi, J.-h Yang, N. Zhang, T. Huang, Z.-W. Zhou, I. Kühnert, P. Pötschke, Y. Wang, Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Prog. Polym. Sci. 123, 101471 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101471

    Article  CAS  Google Scholar 

  10. A. Iqbal, A. Saeed, A. Ul-Hamid, A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry. Polym. Bull. 78, 539–557 (2021). https://doi.org/10.1007/s00289-019-03096-0

    Article  CAS  Google Scholar 

  11. H.F. Kayiran, Numerical analysis of composite disks based on carbon/aramid–epoxy materials. J Emerg Mater Res 11, 155–159 (2022). https://doi.org/10.1680/jemmr.21.00052

    Article  Google Scholar 

  12. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8(1), 904–913 (2019). https://doi.org/10.1016/j.jmrt.2018.04.023

    Article  CAS  Google Scholar 

  13. S. Bortel, R. Hodorowicz, Lamot, Relation between crystallinity degree and stability in solid state of high molecular weight poly(ethylene oxide)s. Die Micromole. Chem. 180, 2491–2498 (1979). https://doi.org/10.1002/macp.1979.021801023

    Article  CAS  Google Scholar 

  14. K. Chrissopoulou, K.S. Andrikopoulos, S. Fotiadou, S. Bollas, C. Karageorgaki, D.C. Los, G.A. Voyiatzis, S.H. Anastasiadis, Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44, 9710–9722 (2011). https://doi.org/10.1021/ma201711r

    Article  CAS  Google Scholar 

  15. Sharanappa Chapi, H. Devendrappa. Raghu, Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22, 803–814 (2016). https://doi.org/10.1007/s11581-015-1600-2

    Article  CAS  Google Scholar 

  16. P. Dhatarwal, R.J. Sengwa, Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO)/Al2O3 and (PVP/PEO)/SiO2 nanocomposites. Optik 233, 166594 (2021). https://doi.org/10.1016/j.ijleo.2021.166594

    Article  CAS  Google Scholar 

  17. B. Chana, R. Kumar, Optical, electrical and acoustical properties of CuSO4 doped PVP based polymer solution. Adv. Appl. Res. 9(2), 69–75 (2017). https://doi.org/10.5958/2349-2104.2017.00014.6

    Article  Google Scholar 

  18. S. Saber, S. El-Sayed, A.M. El Sayed, Influence of Eu3+ on the structural, optical and electrical properties of PEO–PVA: dual bandgap materials for optoelectronic applications. J. Mater. Sci. Mater. Electron. 34, 406 (2023). https://doi.org/10.1007/s10854-023-09841-6

    Article  CAS  Google Scholar 

  19. M.M. Atta, A.M.A. Henaish, A.M. Elbasiony, Eman O. Taha, A.M.: Dorgham, Structural, optical, and thermal properties of PEO/PVP blend reinforced biochar. 127, 112268/1–8 (2022). https://doi.org/10.1016/j.optmat.2022.112268

  20. R. Ahmed, M. Atta, E. Taha, Optical spectroscopy, thermal analysis, and dynamic mechanical properties of graphene nano-platelets reinforced polyvinylchloride. J. Mater. Sci. Mater. Electron. 32, 22699–22717 (2021). https://doi.org/10.1007/s10854-021-06756-y

    Article  CAS  Google Scholar 

  21. R.J. Sengwa, S. Choudhary, P. Dhatarwal, Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J. Mater. Sci. Mater. Electron. 30, 12275–12294 (2019). https://doi.org/10.1007/s10854-019-01587-4

    Article  CAS  Google Scholar 

  22. H.E. Ali, I. Yahia, H. Algarni, Y. Khairy, Enhancing the optical absorption, conductivity, and nonlinear parameters of PVOH films by Bi-doping. New J. Phys. 23, 043001 (2021). https://doi.org/10.1088/1367-2630/abe614

    Article  CAS  Google Scholar 

  23. K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, V.N. Rao, Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys. B Condens. Matter 406, 1706–1712 (2011). https://doi.org/10.1016/j.physb.2011.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to convey their sincere gratitude to DST-FIST, India for providing infrastructural equipments Spectroscopic Ellipsometer and Differential Scanning Calorimetry (DSC) through the grant No. SR/FST/PSI-194/2014 dated July 21, 2015.

Author information

Authors and Affiliations

Authors

Contributions

S. R.: investigation, conceptualization, writing-review and editing. B. P.: advising on conceptualization, review. R. K.: methodology, formal analysis, original draft, review, editing and corrections. All authors approved the final version of the manuscript and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Snehitha Ravulapalli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravulapalli, S., Padal, K.T.B. & Kumar, B.R. Structural and optical properties of PVP/PEO blends doped with CNTs. emergent mater. 6, 1923–1933 (2023). https://doi.org/10.1007/s42247-023-00580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00580-2

Keywords

Navigation