Skip to main content
Log in

Can High-Order Convergence of European Option Prices be Achieved with Common CRR-Type Binomial Trees?

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Considering European call options, we prove that CRR-type binomial trees systematically underprice the value of these options, when the spot price is not near the money. However, we show that, with a volatility premium to compensate this mispricing, any arbitrarily high order of convergence can be achieved, within the common CRR-type binomial tree framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carbone, R.: Binomial approximation of Brownian motion and its maximum. Stat. Probab. Lett. 69(3), 271–285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, L.B., Palmer, K.: Smooth convergence in the binomial model. Financ. Stoch. 11(1), 91–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)

    Article  MATH  Google Scholar 

  4. Diener, F., Diener, M.: Asymptotics of the price oscillations of a European call option in a tree model. Math. Financ. 14(2), 271–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diener, F., Diener, M.: Higher-order terms for the de Moivre-Laplace theorem. Contemp. Math. 373, 191–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dupuis, P., Wang, H.: Optimal stopping with random intervention times. Adv. Appl. Probab. 34(1), 141–157 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupuis, P., Wang, H.: On the convergence from discrete to continuous time in an optimal stopping problem. Ann. Appl. Probab. 15, 1339–1366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heston, S., Zhou, G.: On the rate of convergence of discrete-time contingent claims. Math. Financ. 10(1), 53–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, B., Liang, J., Jiang, L.: Optimal convergence rate of the explicit finite difference scheme for American option valuation. J. Comput. Appl. Math. 230(2), 583–599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joshi, M.S.: Achieving smooth asymptotics for the prices of European options in binomial trees. Quant. Financ. 9(2), 171–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Joshi, M.S.: Achieving higher order convergence for the prices of European options in binomial trees. Math. Financ. 20(1), 89–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Joshi, M.S.: More Mathematical Finance. Pilot Whale, Melbourne (2011)

    Google Scholar 

  13. Kifer, Y.: Error estimates for binomial approximations of game options. Ann. Appl. Probab. 16(2), 984–1033 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korn, R., Müller, S.: The optimal-drift model: an accelerated binomial scheme. Financ. Stoch. 16, 1–26 (2012)

    Article  Google Scholar 

  15. Lamberton, D.: Error estimates for the binomial approximation of American put options. Ann. Appl. Probab. 8(1), 206–233 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lamberton, D.: Vitesse de convergence pour des approximations de type binomial, Ecole CEA, EDF, INRIA mathématiques financières: modèles économiques et mathématiques des produits dérivés, 347–359 (1999)

  17. Lamberton, D.: Brownian optimal stopping and random walks. Appl. Math. Optim. 45(3), 283–324 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lamberton, D., Rogers, L.C.G.: Optimal stopping and embedding. J. Appl. Probab. 37(4), 1143–1148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leduc, G.: Exercisability randomization of the American option. Stoch. Anal. Appl. 26(4), 832–855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leduc, G.: Convergence rate of the binomial tree scheme for continuously paying options. Ann. des Sci. Mathématiques du Québec 36(2), 381–394 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Leduc, G.: A European option general first-order error formula. ANZIAM J. 54(4), 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leisen, D.P.J.: Pricing the American put option: a detailed convergence analysis for binomial models. J. Econ. Dyn. Control 22(8–9), 1419–1444 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leisen, D.P.J., Reimer, M.: Binomial models for option valuation-examining and improving convergence. Appl. Math. Financ. 3(4), 319–346 (1996)

    Article  Google Scholar 

  24. Liang, J., Hu, B., Jiang, L., Bian, B.: On the rate of convergence of the binomial tree scheme for American options. Numeri. Math. 107(2), 333–352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, J., Palmer, K.: Convergence of barrier option prices in the binomial model. Math. Financ. 23(2), 318–338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, Y.: A flexible binomial option pricing model. J. Futur. Mark. 19(7), 817–843 (1999)

    Article  Google Scholar 

  27. Walsh, J.B.: The rate of convergence of the binomial tree scheme. Financ. Stoch. 7(3), 337–361 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, X.: Improving speed of convergence for the prices of european options in binomial trees with even numbers of steps. Appl. Math. Comput. 216(9), 2659–2670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express a heartfelt gratitude to Mark Joshi for his comments and suggestions. The comments of an anonymous referee led to noticeable improvements in the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Leduc.

Additional information

Communicated by Anton Abdulbasah Kamil.

Appendix

Appendix

We prove here Theorem 1. Apart from the fact the coefficient of \(\lambda _{\ell }\) in \(\mathcal {P}_{\ell }\) is given by (1.5), the rest is a textual application of the method described in Diener and Diener [4] with simple observations. The method is briefly summarized here.

Note first that, obviously, \(\mathrm {u}(n,\,\overrightarrow{\lambda })\) and \(\mathrm {d}(n,\,\overrightarrow{\lambda })\) have a convergent expansion in powers of \(n^{-1/2}\), hence our binomial schemes are part of the general class described in [4]. To see that the coefficients \(C_{\ell }\) have the form (1.3) with \(\mathcal {P}_{\ell }\) a multivariate polynomial in \(\sigma ^{-1},\sigma ,\lambda _{2},\ldots ,\lambda _{\ell },\kappa \), we follow the method described in [4]. More specifically, the authors obtain the asymptotic expansion of C(n) by replacing the “frozen” parameter \(\kappa \) by \(\overline{\kappa } (n,\,\overrightarrow{\lambda })\) in the asymptotic expansion of function \(C(n,\kappa )\) which, in the notation of [4], is defined as

$$\begin{aligned}&\displaystyle C(n,\kappa )\overset{def}{=}S_{0}c(n,\kappa )I^{q}(n,\kappa )-Ke^{-rT} c(n,\kappa )I^{p}(n,\kappa ),\\&\displaystyle c(n,\kappa )\overset{def}{=}\frac{2^{1-n}}{\sqrt{n}}\mathrm {k}\left( n,\kappa \right) \left( {\begin{array}{c}n\\ \mathrm {k}\left( n,\kappa \right) \end{array}}\right) ,\\&\displaystyle \mathrm {k}\left( n,\kappa \right) \overset{def}{=}\mathrm {a} (n,\,\overrightarrow{\lambda })+1-\kappa , \end{aligned}$$

and where \(I^{p}\) is defined by [4, Eq. (3.9)] and \(I^{q}\) is defined similarly. Diener and Diener write the expansion of \(\mathrm {k}\left( n,\kappa \right) \) as

$$\begin{aligned} \mathrm {k}\left( n,\kappa \right) =\mathrm {k}_{-2}n+\mathrm {k}_{-1}\sqrt{n}+\mathrm {k}_{0}+\cdots +\mathrm {k}_{i_{0}-3}n^{\frac{i_{0}-3}{2}}, \end{aligned}$$
(6.1)

where the \(\mathrm {k}_{j}\) are obtained from (1.2). Note that \(\mathrm {k}_{-2}=1/2\) and \(\mathrm {k}_{0}=1-\kappa \). Following Diener and Diener, we write

$$\begin{aligned} c(n,\kappa )&=\exp (\left( 1-n\right) \ln 2-\frac{1}{2}\ln n+\ln \left( \mathrm {k}\left( n,\kappa \right) \right) \\&\quad +\ln \left( n!\right) -\ln \left( \left( n-\mathrm {k}\left( n,\kappa \right) \right) !\right) -\ln \left( \mathrm {k}\left( n,\kappa \right) !\right) ) \end{aligned}$$

and use Stirling’s formula and (6.1), to see that \(c(n,\kappa )\) has an asymptotic expansion in powers of \(\sqrt{n}^{-1}\), where the coefficients are an exponential term, \(\exp \left( -2\mathrm {k}_{-1} ^{2}\right) \), multiplying multivariate polynomials in \(\mathrm {k} _{-1},\ldots ,\mathrm {k}_{i_{0}-3}\). The latter translate into polynomials in \(\sigma ^{-1},\sigma ,\lambda _{2},\ldots \,,\lambda _{i_{0}},\kappa \). This asymptotic expansion is uniform not only over \(0\le \kappa \le 1\) as pointed out in [4], but also over \(\mathrm {k}_{-1},\ldots ,\mathrm {k} _{i_{0}-3}\) in any compact set and, therefore, over \( \mathcal {L} ^{-1}\le \sigma \le \mathcal {L} \), and \(\left| \lambda _{\ell }\right| \le \mathcal {L} \), \(\ell =2,\ldots ,i_{0}\) for any \( \mathcal {L} >0\). As for the asymptotic expansions of \(I^{p}(n,\kappa )\) and \(I^{q} (n,\kappa )\) in powers of \(\sqrt{n}^{-1}\), they are treated in an analogous manner, resulting in a trivial extension of [4, Theorem 3.4]. The explicit expression of each \(\mathcal {P}_{\ell } \) needs to be calculated using a computational algebra system such as Diener and Diener’s Maple worksheet, available at http://math.unice.fr/~diener, which we adapted to calculate the \(\mathcal {P}_{\ell }\)’s needed for our numerical illustration.

In order to show that \(\mathcal {P}_{\ell }\) is of degree one when seen as functions of \(\lambda _{\ell }\), we introduce a new “frozen” parameter \(\mu \). More specifically, we write \(C(n)=C(n,\mu \left( n\right) )\), where \(C(n,\mu )\) is the value of the call option in the binomial scheme

$$\begin{aligned} \mathrm {u}(n,\lambda _{2},\mu )&=\exp \left( \sigma \sqrt{\frac{T}{n} }+\left( \lambda _{2}\,\sigma ^{2}+\mu \right) \frac{T}{n}\right) ,\\ \mathrm {d}(n,\lambda _{2},\mu )&=\exp \left( -\sigma \sqrt{\frac{T}{n} }+\left( \lambda _{2}\,\sigma ^{2}+\mu \right) \frac{T}{n}\right) , \end{aligned}$$

and where

$$\begin{aligned} \mu \left( n\right) =\sum _{\ell =3}^{i_{0}}\lambda _{\ell }\frac{2\,\sigma \,}{T}\sqrt{\frac{T}{n}}^{\ell -2}. \end{aligned}$$

Note that \(C(n,\mu )\) is a particular case of \(C(n,\,\overrightarrow{\lambda })\) with \(\lambda _{2}\) replaced by \(\lambda _{2}+\mu /\sigma ^{2}\), and \(\lambda _{\ell }\) replaced by 0 for \(\ell \ge 3\). Proceeding just as in [4], we get a “new” asymptotic expansion of C(n) by substituting our “frozen” parameter \(\mu \) by \(\mu \left( n\right) \) in the asymptotic expansion of \(C(n,\mu )\). Obviously our “old” expansion of C(n) given in (1.3) can be obtained by collecting together, from the “new” expansion, all the factors of \(n^{-\ell /2}\) for \(\ell =2,\ldots ,i_{0} \). Now fix \(\ell \ge 3\) and concentrate on \(\lambda _{\ell }\). Obviously, any polynomial in \(\lambda _{2}+\mu \left( n\right) /\sigma ^{2}\) translates into a polynomial in \(\lambda _{\ell }n^{-(\ell -2)/2}\). Therefore, collecting the factors of \(n^{-\ell /2}\) from the “new” expansion of C(n) involves only the terms for which the degree of \(\lambda _{\ell }\) is one in the “new” \(\mathcal {P}_{2}\), since for every \(j\ge 2\), \(\mathcal {P}_{j}\) is itself a factor of \(n^{-j/2}\). Doing so, one easily gets that the coefficient of \(\lambda _{\ell }\) in the “old” \(\mathcal {P}_{\ell }\) is given by (1.5). Note that, clearly, for \(j<\ell \), \(\lambda _{\ell }\) does not appear in the “old” \(\mathcal {P}_{j}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leduc, G. Can High-Order Convergence of European Option Prices be Achieved with Common CRR-Type Binomial Trees?. Bull. Malays. Math. Sci. Soc. 39, 1329–1342 (2016). https://doi.org/10.1007/s40840-015-0221-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0221-2

Keywords

Mathematics Subject Classification

JEL Classification

Navigation