Skip to main content
Log in

A projection recurrent neural network based sliding mode control to stabilize unknown fractional-order chaotic systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a new approach based on Projection Recurrent Neural Network (PRNN) and Discrete-time Sliding Mode Control (DTSMC) has been proposed to stabilize Fractional-order Chaotic Systems with uncertain fractional-order. The main idea is to describe the FOLS as a linear regression where the unknown parameters vector includes the terms dependent on the fractional order. Constrained Quadratic Programming (CQP) has been introduced to minimize the difference between the FOLS and its regression description, in which the fractional orders are considered as optimization variables. According to the optimality conditions for the CQP, the PRNN as a numerical optimizer has been extended. The exponential reaching laws are used to obtain the control signals of DTSMC. The estimated fractional order is simultaneously applied to the controller. The asymptotic stability of the optimizer, as well as the robustness of the proposed algorithm against the uncertainty in the fractional order, have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Layek GC (2015) An introduction to dynamical systems and chaos. Springer, New Delhi, pp 1–619. https://doi.org/10.1007/978-81-322-2556-0

    Book  MATH  Google Scholar 

  2. Ye G (2010) Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recogn Lett 31(5):347–354. https://doi.org/10.1016/j.patrec.2009.11.008

    Article  Google Scholar 

  3. Njitacke ZT, Fotsin HB, Negou AN, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos Solitons Fractals 91:180–197. https://doi.org/10.1016/j.chaos.2016.05.011

    Article  Google Scholar 

  4. Petráš I (2010) A note on the fractional-order Volta’s system. Commun Nonlinear Sci Numer Simul 15(2):384–393. https://doi.org/10.1016/j.cnsns.2009.04.009

    Article  MathSciNet  MATH  Google Scholar 

  5. Balootaki MA, Rahmani H, Moeinkhah H, Mohammadzadeh A (2020) On the synchronization and stabilization of fractional-order chaotic systems: recent advances and future perspectives. Physica A: Stat Mech Appl 551:124203. https://doi.org/10.1016/j.physa.2020.124203

    Article  MathSciNet  MATH  Google Scholar 

  6. Khan A, Tyagi A (2018) Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractional order Newton-Leipnik chaotic system. Int J Dyn Control 6(3):1136–1149. https://doi.org/10.1007/s40435-017-0370-2

    Article  MathSciNet  Google Scholar 

  7. Modiri A, Mobayen S (2020) Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems. ISA Trans 105:33–50. https://doi.org/10.1016/j.isatra.2020.05.039

    Article  Google Scholar 

  8. Deepika D, Kaur S, Narayan S (2018) Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control. Chaos Solitons Fractals 115:196–203. https://doi.org/10.1016/j.chaos.2018.07.028

    Article  MathSciNet  MATH  Google Scholar 

  9. Song C, Fei S, Cao J, Huang C (2019) Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control. Mathematics 7(7):599. https://doi.org/10.3390/math7070599

    Article  Google Scholar 

  10. Xu Y, Wang H, Liu D, Huang H (2015) Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations. J Vib Control 21(3):435–448. https://doi.org/10.1177/1077546313486283

    Article  MathSciNet  Google Scholar 

  11. Wang YL, Jahanshahi H, Bekiros S, Bezzina F, Chu YM, Aly AA (2021) Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos Solitons Fractals 146(146):110881. https://doi.org/10.1016/j.chaos.2021.110881

    Article  MathSciNet  MATH  Google Scholar 

  12. Faieghi MR, Delavari H, Baleanu D (2012) Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control. J Vib Control 18(9):1366–1374. https://doi.org/10.1177/1077546311422243

    Article  MathSciNet  Google Scholar 

  13. Mirrezapour SZ, Zare A, Hallaji M (2021) A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances. J Vib Control. https://doi.org/10.1177/1077546320982453

    Article  Google Scholar 

  14. Shahri ESA, Alfi A, Tenreiro Machado JA (2017) Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control. J Comput Nonlinear Dyn 12(3):031014. https://doi.org/10.1115/1.4035196

    Article  Google Scholar 

  15. David SA, de Sousa RV, Valentim CA Jr, Tabile RA, Machado JAT (2016) Fractional PID controller in an active image stabilization system for mitigating vibration effects in agricultural tractors. Comput Electron Agric 131:1–9. https://doi.org/10.1016/j.compag.2016.11.001

    Article  Google Scholar 

  16. Wang R, YunNing Z, Chen Y, Chen X, Lei X (2020) Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: an adaptive sliding mode control approach. Nonlinear Dyn 100(2):1275–1287. https://doi.org/10.1007/s11071-020-05574-x

    Article  MATH  Google Scholar 

  17. Chen T, Yang H, Yuan J (2021) Event-triggered adaptive neural network backstepping sliding mode control for fractional order chaotic systems synchronization with input delay. IEEE Access 9:100868–100881. https://doi.org/10.1109/ACCESS.2021.3097159

    Article  Google Scholar 

  18. Khan A, Jahanzaib LS (2019) Synchronization on the adaptive sliding mode controller for fractional order complex chaotic systems with uncertainty and disturbances. Int J Dyn Control 7(4):1419–1433. https://doi.org/10.1007/s40435-019-00585-y

    Article  MathSciNet  Google Scholar 

  19. Mofid O, Mobayen S (2018) Adaptive synchronization of fractional-order quadratic chaotic flows with nonhyperbolic equilibrium. J Vib Control 24(21):4971–4987. https://doi.org/10.1177/1077546317740021

    Article  MathSciNet  Google Scholar 

  20. Sun Z (2018) Synchronization of fractional-order chaotic systems with non-identical orders, unknown parameters and disturbances via sliding mode control. Chin J Phys 56(5):2553–2559. https://doi.org/10.1016/j.cjph.2018.08.007

    Article  MathSciNet  Google Scholar 

  21. Shao K, Xu Z, Wang T (2021) Robust finite-time sliding mode synchronization of fractional-order hyper-chaotic systems based on adaptive neural network and disturbances observer. Int J Dyn Control 9(2):541–549. https://doi.org/10.1007/s40435-020-00657-4

    Article  MathSciNet  Google Scholar 

  22. Deepika D (2022) Hyperbolic uncertainty estimator based fractional order sliding mode control framework for uncertain fractional order chaos stabilization and synchronization. ISA Trans 123:76–86. https://doi.org/10.1016/j.isatra.2021.05.036

    Article  Google Scholar 

  23. Dalir M, Bigdeli N (2020) The design of a new hybrid controller for fractional-order uncertain chaotic systems with unknown time-varying delays. Appl Soft Comput 87:106000. https://doi.org/10.1016/j.asoc.2019.106000

    Article  Google Scholar 

  24. Lopes AM, Machado JT (2021) Multidimensional scaling analysis of generalized mean discrete-time fractional order controllers. Commun Nonlinear Sci Numer Simul 95:105657. https://doi.org/10.1016/j.cnsns.2020.105657

    Article  MathSciNet  MATH  Google Scholar 

  25. Vafaei V, Kheiri H, Akbarfam AJ (2019) Synchronization of fractional-order chaotic systems with disturbances via novel fractional-integer integral sliding mode control and application to neuron models. Math Methods Appl Sci 42(8):2761–2773. https://doi.org/10.1002/mma.5548

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang J, Cao D, Chen H (2020) Sliding mode control for a class of variable-order fractional chaotic systems. J Franklin Inst 357(15):10127–10158. https://doi.org/10.1016/j.jfranklin.2019.11.036

    Article  MathSciNet  MATH  Google Scholar 

  27. Li RG, Wu HN (2019) Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching–learning–feedback-based optimization. Nonlinear Dyn 95(2):1221–1243. https://doi.org/10.1007/s11071-018-4625-z

    Article  MATH  Google Scholar 

  28. Moghaddam TV, Yadavar Nikravesh SK, Khosravi MA (2020) Adaptive constrained sliding mode control of uncertain nonlinear fractional-order input affine systems. J Vib Control 26(5–6):318–330. https://doi.org/10.1177/1077546319879484

    Article  MathSciNet  Google Scholar 

  29. Rabah K, Ladaci S, Lashab M (2017) A novel fractional sliding mode control configuration for synchronizing disturbed fractional-order chaotic systems. Pramana 89(3):1–13. https://doi.org/10.1007/s12043-017-1443-7

    Article  Google Scholar 

  30. Al-sawalha MM (2020) Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control. Adv Diff Equ 2020(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu D, Zhang W, Liu C, Duan J (2021) Fractional-order hyperbolic tangent sliding mode control for chaotic oscillation in power system. Math Probl Eng 2021:1–10. https://doi.org/10.1155/2021/6691941

    Article  MathSciNet  Google Scholar 

  32. Tong Y, Cao Z, Yang H, Li C, Yu W (2022) Design of a five-dimensional fractional-order chaotic system and its sliding mode control. Indian J Phys 96(3):855–867. https://doi.org/10.1007/s12648-021-02181-3

    Article  Google Scholar 

  33. Chen Y, Tang C, Roohi M (2021) Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: an application in secure communications. J Franklin Inst 358(16):8109–8137. https://doi.org/10.1016/j.jfranklin.2021.08.007

    Article  MathSciNet  MATH  Google Scholar 

  34. Gu W, Yu Y, Hu W (2017) Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time delay. IEEE/CAA J Automatica Sinica 4(1):107–113. https://doi.org/10.1109/JAS.2017.7510340

    Article  MathSciNet  Google Scholar 

  35. Gu W, Yu Y, Hu W (2016) Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution. Nonlinear Dyn 84(2):779–795. https://doi.org/10.1007/s11071-015-2527-x

    Article  MathSciNet  Google Scholar 

  36. Mohammadzadeh A, Ghaemi S (2017) Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC. Nonlinear Dyn 88(4):2993–3002

    Article  Google Scholar 

  37. Sabzalian MH, Mohammadzadeh A, Lin S, Zhang W (2019) Robust fuzzy control for fractional-order systems with estimated fraction-order. Nonlinear Dyn 98(3):2375–2385

    Article  MATH  Google Scholar 

  38. Joya G, Atencia MA, Sandoval F (2002) Hopfield neural networks for optimization: study of the different dynamics. Neurocomputing 43(1–4):219–237. https://doi.org/10.1016/S0925-2312(01)00337-X

    Article  MATH  Google Scholar 

  39. Kinderlehrer D, Stampacchia G (2000) An introduction to variational inequalities and their applications. Soc Ind Appl Math. https://doi.org/10.1137/1023111

    Article  MATH  Google Scholar 

  40. Liu Q, Wang J (2008) A one-layer recurrent neural network with a discontinuous activation function for linear programming. Neural Comput 20(5):1366–1383. https://doi.org/10.1162/neco.2007.03-07-488

    Article  MathSciNet  MATH  Google Scholar 

  41. Xia Y, Wang J (2015) A bi-projection neural network for solving constrained quadratic optimization problems. IEEE Transactions Neural Netw Learn Syst 27(2):214–224. https://doi.org/10.1109/TNNLS.2015.2500618

    Article  MathSciNet  Google Scholar 

  42. Xia Y, Wang J, Guo W (2019) Two projection neural networks with reduced model complexity for nonlinear programming. IEEE Transactions Neural Netw Learn Syst 31(6):2020–2029. https://doi.org/10.1109/TNNLS.2019.2927639

    Article  MathSciNet  Google Scholar 

  43. Liu Q, Wang J (2015) A projection neural network for constrained quadratic minimax optimization. IEEE Transactions Neural Netw Learn Syst 26(11):2891–2900. https://doi.org/10.1109/TNNLS.2015.2425301

    Article  MathSciNet  Google Scholar 

  44. Liu C, Li C, Li W (2020) Computationally efficient MPC for path following of underactuated marine vessels using projection neural network. Neural Comput Appl 32(11):7455–7464. https://doi.org/10.1007/s00521-019-04273-y

    Article  Google Scholar 

  45. Hassan AA, El-Habrouk M, Deghedie S (2020) Inverse kinematics of redundant manipulators formulated as quadratic programming optimization problem solved using recurrent neural networks: a review. Robotica 38(8):1495–1512. https://doi.org/10.1017/S0263574719001590

    Article  Google Scholar 

  46. Monje CA, Chen YQ, Vinagre BM, Xue D, and Feliu-Batlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer https://doi.org/10.1007/978-1-84996-335-0

  47. Yu Y, Li HX, Wang S, Yu J (2009) Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42(2):1181–1189. https://doi.org/10.1016/j.chaos.2009.03.016

    Article  MathSciNet  MATH  Google Scholar 

  48. Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1):3–22. https://doi.org/10.1023/A:1016592219341

    Article  MathSciNet  MATH  Google Scholar 

  49. Xia Y, Wang J (1998) A general methodology for designing globally convergent optimization neural networks. IEEE Trans Neural Netw 9(6):1331–1343. https://doi.org/10.1109/72.728383

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Kariminia.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariminia, A., Zarabadipour, H. A projection recurrent neural network based sliding mode control to stabilize unknown fractional-order chaotic systems. Int. J. Dynam. Control 11, 1736–1750 (2023). https://doi.org/10.1007/s40435-022-01072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-01072-7

Keywords

Navigation