Skip to main content
Log in

The effect of STFs formed with different dispersing mediums on rheological properties

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article presents a study on the rheological behavior of shear thickening fluids (STF) produced with various dispersing mediums selected according to their molecular weight, number of hydroxyl groups, branching and chain length. STF is non-Newtonian fluid behavior in which the increase in the viscosity increases with the applied shear rate. Polyethylene glycol 200, polyethylene glycol 400, 1,2-propanediol, tetraethyl orthosilicate, monoethanolamine, glycerin and diethylene glycol were used as the dispersing mediums. The steady-state rheological properties of STFs were investigated. After the rheological test, STF produced with glycerin with a concentration of 27.5% by weight gave better rheological results than STFs produced with other liquids. Although glycerin has a relatively low molecular weight, it appears that the rheological properties of glycerin are better because the STF produced with glycerin has three hydroxyl groups (3 OH) in its structure. The critical shear rate of STF at 27.5% concentration by weight produced with glycerin is 2.39 1/s, and the peak viscosity is 732.4 Pa·s. Additionally, the weight concentration effect was also investigated. STFs were produced with polyethylene glycol 400 and 1,2-propanediol liquids at concentrations of 20%, 22.5%, 25% and 27.5% by weight. When the rheological properties of these STFs were examined, it was seen that the rheological properties improved as the concentration amount increased. For this reason, it may not be sufficient to consider only the molecular weight when choosing the dispersing medium during STF production. In addition to the molecular weight, it is necessary to consider the number of hydroxyl groups, branching and the chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barnes HA (1989) Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366. https://doi.org/10.1122/1.550017

    Article  ADS  CAS  Google Scholar 

  2. Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91(3):1866–1874. https://doi.org/10.1063/1.457091

    Article  ADS  CAS  Google Scholar 

  3. Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62(10):27–32. https://doi.org/10.1063/1.3248476

    Article  CAS  Google Scholar 

  4. Lee YS, Wagner NJ (2006) Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates. Ind Eng Chem Res 45(21):7015–7024. https://doi.org/10.1021/ie0512690

    Article  CAS  Google Scholar 

  5. Lu Z, Yuan Z, Chen X, Qiu J (2019) Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Compos Struct 227:111208. https://doi.org/10.1016/j.compstruct.2019.111208

    Article  Google Scholar 

  6. Majumdar A, Butola BS, Srivastava A (2014) Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid. Mater Des 1980–2015(54):295–300. https://doi.org/10.1016/j.matdes.2013.07.086

    Article  CAS  Google Scholar 

  7. Lin K, Liu H, Wei M, Zhou A, Bu F (2018) Dynamic performance of shear-thickening fluid damper under long-term cyclic loads. Smart Mater Struct 28(2):025007. https://doi.org/10.1088/1361-665X/aaf079

    Article  ADS  Google Scholar 

  8. Bajya M, Majumdar A, Butola BS, Verma SK, Bhattacharjee D (2020) Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid. Compos B Eng 183:107721. https://doi.org/10.1016/j.compositesb.2019.107721

    Article  CAS  Google Scholar 

  9. Khodadadi A, Liaghat G, Vahid S, Sabet AR, Hadavinia H (2019) Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos B Eng 162:643–652. https://doi.org/10.1016/j.compositesb.2018.12.121

    Article  CAS  Google Scholar 

  10. Ding J, Tracey P, Li W, Peng G, Whitten PG, Wallace GG (2013) Review on shear thickening fluids and applications. Text Light Ind Sci Technol 2(4):161–173

    Google Scholar 

  11. Gürgen S, Kuşhan MC, Li W (2017) Shear thickening fluids in protective applications: a review. Prog Polym Sci 75:48–72. https://doi.org/10.1016/j.progpolymsci.2017.07.003

    Article  CAS  Google Scholar 

  12. Zarei M, Aalaie J (2020) Application of shear thickening fluids in material development. J Mater Res Technol 9(5):10411–10433. https://doi.org/10.1016/j.jmrt.2020.07.049

    Article  Google Scholar 

  13. Srivastava A, Majumdar A, Butola BS (2012) Improving the impact resistance of textile structures by using shear thickening fluids: a review. Crit Rev Solid State Mater Sci 37(2):115–129. https://doi.org/10.1080/10408436.2011.613493

    Article  ADS  CAS  Google Scholar 

  14. Hasanzadeh M, Mottaghitalab V (2014) The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J Mater Eng Perform 23(4):1182–1196. https://doi.org/10.1007/s11665-014-0870-6

    Article  CAS  Google Scholar 

  15. Baharvandi HR, Alebooyeh M, Alizadeh M, Heydari MS, Kordani N, Khaksari P (2016) The influences of particle–particle interaction and viscosity of carrier fluid on characteristics of silica and calcium carbonate suspensions-coated Twaron® composite. J Exp Nanosci 11(7):550–563. https://doi.org/10.1080/17458080.2015.1094190

    Article  CAS  Google Scholar 

  16. Liu XQ, Bao RY, Wu XJ, Yang W, Xie BH, Yang MB (2015) Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv 5(24):18367–18374. https://doi.org/10.1039/C4RA16261G

    Article  ADS  CAS  Google Scholar 

  17. Lee BW, Kim IJ, Kim CG (2009) The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J compos mater. https://doi.org/10.1177/0021998309345292

    Article  Google Scholar 

  18. Mawkhlieng U, Majumdar A (2019) Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos B Eng 175:107167. https://doi.org/10.1016/j.compositesb.2019.107167

    Article  CAS  Google Scholar 

  19. Antosik A, Gluszek M, Zurowski R, Szafran M (2017) Influence of carrier fluid on the electrokinetic and rheological properties of shear thickening fluids. Ceram Int 43(15):12293–12301. https://doi.org/10.1016/j.ceramint.2017.06.092

    Article  CAS  Google Scholar 

  20. Gürgen S, Sofuoğlu MA, Kuşhan MC (2020) Rheological modeling of multi-phase shear thickening fluid using an intelligent methodology. J Braz Soc Mech Sci Eng 42(11):1–7. https://doi.org/10.1007/s40430-020-02681-z

    Article  Google Scholar 

  21. Shenoy SS, Wagner NJ (2005) Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheol acta. https://doi.org/10.1007/s00397-004-0418-z

    Article  Google Scholar 

  22. Moriana AD, Tian T, Sencadas V, Li W (2016) Comparison of rheological behaviors with fumed silica-based shear thickening fluids. Korea-Aust Rheol J 28(3):197–205. https://doi.org/10.1007/s13367-016-0020-9

    Article  Google Scholar 

  23. Qin J, Zhang G, Shi X (2017) Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol. J Dispers Sci Technol 38(7):935–942. https://doi.org/10.1080/01932691.2016.1216435

    Article  CAS  Google Scholar 

  24. Khandavalli S, Rothstein JP (2014) Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution. J Rheol 58(2):411–431. https://doi.org/10.1122/1.4864620

    Article  ADS  CAS  Google Scholar 

  25. Li W, Xiong D, Zhao X, Sun L, Liu J (2016) Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid. Mater Des 102:162–167. https://doi.org/10.1016/j.matdes.2016.04.006

    Article  CAS  Google Scholar 

  26. Gong X, Xu Y, Zhu W, Xuan S, Jiang W, Jiang W (2013) Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric. J Compos Mater 48(6):641–657. https://doi.org/10.1177/0021998313476525

    Article  Google Scholar 

  27. Li D, Wang R, Liu X, Zhang S, Fang S, Yan R (2020) Effect of dispersing media and temperature on inter-yarn frictional properties of Kevlar fabrics impregnated with shear thickening fluid. Compos Struct 249:112557. https://doi.org/10.1016/j.compstruct.2020.112557

    Article  Google Scholar 

  28. Manukonda BH, Chatterjee VA, Verma SK, Bhattacharjee D, Biswas I, Neogi S (2020) Rheology based design of shear thickening fluid for soft body armor applications. Period Polytech Chem Eng 64(1):75–84. https://doi.org/10.3311/PPch.13626

    Article  CAS  Google Scholar 

  29. Liu L, Yang Z, Zhao Z, Liu X, Chen W (2020) The influences of rheological property on the impact performance of kevlar fabrics impregnated with SiO2/PEG shear thickening fluid. Thin-Walled Struct 151:106717. https://doi.org/10.1016/j.tws.2020.106717

    Article  Google Scholar 

  30. Baharvandi HR, Saeedi Heydari M, Kordani N, Alebooyeh M, Alizadeh M, Khaksari P (2017) Characterization of the rheological and mechanical properties of shear thickening fluid-coated Twaron® composite. J Text Inst 108(3):397–407. https://doi.org/10.1080/00405000.2016.1168091

    Article  CAS  Google Scholar 

  31. Hassan TA, Rangari VK, Jeelani S (2010) Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater Sci Eng A 527(12):2892–2899. https://doi.org/10.1016/j.msea.2010.01.018

    Article  CAS  Google Scholar 

  32. He Z, Xuan H, Bai C, Hu Y, Cong P, Bai H, Hong W (2017) Containment tests and analysis of soft wall casing fabricated by wrapping Kevlar fabric around thin metal ring. Aerosp Sci Technol 61:35–44. https://doi.org/10.1016/j.ast.2016.11.018

    Article  Google Scholar 

  33. McMillan A. (2008). Material development for fan blade containment casing. In: Journal of physics: conference series (Vol. 105, No. 1, p. 012011). IOP Publishing. https://doi.org/10.1088/1742-6596/105/1/012011

  34. Baharvandi HR, Alebooyeh M, Alizadeh M, Khaksari P, Kordani N (2016) Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron® composite. J Ind Text 46(2):473–494. https://doi.org/10.1177/1528083715589750

    Article  CAS  Google Scholar 

  35. Zhang Q, Qin Z, Yan R, Wei S, Zhang W, Lu S, Jia L (2021) Processing technology and ballistic-resistant mechanism of shear thickening fluid/high-performance fiber-reinforced composites: a review. Compos Struct 266:113806. https://doi.org/10.1016/j.compstruct.2021.113806

    Article  CAS  Google Scholar 

  36. Majumdar A, Butola BS, Srivastava A (2013) Optimal designing of soft body armour materials using shear thickening fluid. Mater Des 46:191–198. https://doi.org/10.1016/j.matdes.2012.10.018

    Article  CAS  Google Scholar 

  37. Ghosh A, Chauhan I, Majumdar A, Butola BS (2017) Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose 24(10):4163–4171. https://doi.org/10.1007/s10570-017-1440-5

    Article  CAS  Google Scholar 

  38. Jaishankar A, Wee M, Matia-Merino L, Goh KK, McKinley GH (2015) Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydr Polym 123:136–145. https://doi.org/10.1016/j.carbpol.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  39. Ueno K, Imaizumi S, Hata K, Watanabe M (2009) Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions. Langmuir 25(2):825–831. https://doi.org/10.1021/la803124m

    Article  CAS  PubMed  Google Scholar 

  40. Biçer A, Ahmet SARI (2017) Isıl enerji depolama amaçlı yapıca kararlı yeni bir faz değişim malzemesi olarak silikafume/polietilen glikol (peg) kompoziti. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17(2):683–690. https://doi.org/10.5578/fmbd.57516

    Article  Google Scholar 

  41. Chakraborty S, Biswas S, Sa B, Das S, Dey R (2014) In vitro & in vivo correlation of release behavior of andrographolide from silica and PEG assisted silica gel matrix. Colloids Surf A 455:111–121. https://doi.org/10.1016/j.colsurfa.2014.04.046

    Article  CAS  Google Scholar 

  42. MuliaK KE, Terahadi F, Putri S (2015) Selected natural deep eutectic solvents for the extraction of α-mangostin from mangosteen (Garcinia mangostana L.) pericarp. Int J Technol 6(7):1211–1220

    Article  Google Scholar 

  43. Hadela A, Lakić M, Potočnik M, Košak A, Gutmaher A, Lobnik A (2020) Novel reusable functionalized magnetic cobalt ferrite nanoparticles as oil adsorbents. Adsorpt Sci Technol 38(5–6):168–190. https://doi.org/10.1177/0263617420922014

    Article  CAS  Google Scholar 

  44. Corobea MS, Stoenescu M, Miculescu M, Raditoiu V, Fierascu RC, Sirbu I, Voicu SI (2014) Titanium functionalizing and derivatizing for implantable materials osseointegration properties enhancing. Dig J Nanomater Biostruct 9(4):1339–1347

    Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The authors would like to acknowledge funding from the Erciyes University Scientific Research Projects Coordination Unit (BAP) under research Grant No. FDK-2021–11055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpertunga Ceylan.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Technical Editor: Edson José Soares.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, A., Ercümen, K.M., Aydin, M. et al. The effect of STFs formed with different dispersing mediums on rheological properties. J Braz. Soc. Mech. Sci. Eng. 46, 142 (2024). https://doi.org/10.1007/s40430-024-04725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04725-0

Keywords

Navigation