Skip to main content
Log in

A Concise, Practical Chiral Resolution Approach of Racemic (E)-4,4-Dimethyl-1-(4-nitrophenyl)pent-1-en-3-ol to Its both Enantiomers via Strategy of Diastereomeric Ester Formation and Crystallization Using both N-Boc-D- and N-Boc-L-phenylglycines as Chiral Auxiliaries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Chiral secondary alcohols are an important class of functionalities commonly seen in drugs and other bioactive compounds. In an ongoing drug discovery program in our laboratories, a nitro-bearing racemic allylic secondary alcohol (±)-1 was discovered as a promising drug candidate, and in the following preclinical studies, a concise, reliable, practical synthetic approach to its both enantiomers with high optical purities was greatly needed. In the present study, we developed a chiral resolution approach of (±)-1 to its both enantiomers, i. e., (+)-1 and (−)-1, via the strategy of diastereomeric ester formation and crystallization using both N-Boc-D- and N-Boc-L-phenylglycines as chiral auxiliaries. The absolute configurations of all the four key intermediates were unambiguously determined by single-crystal X-ray diffraction, providing a solid foundation for the stereochemistry of the present study. The two enantiomers were obtained in high optical purities. This approach is characterized by scalability and practicality and is envisaged to enable the chiral resolution of other racemic secondary alcohols, especially those with labile groups, such as NO2 and olefinic C=C bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abram M., Jakubiec M., Kamiński K., ChemMedChem, 2019, 14, 1744.

    Article  CAS  PubMed  Google Scholar 

  2. Tamatam R., Shin D., Pharmaceuticals, 2023, 16, 339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie X., Lu B., Li W., Zhang Z., Coordin. Chem. Rev., 2018, 355, 39.

    Article  CAS  Google Scholar 

  4. Chen W., Tan C.-H., Wang H., Ye X., Eur. J. Org. Chem., 2021, 3091.

  5. Zhou J., Xu G., Ni Y., ACS Catal., 2020, 10, 10954.

    Article  CAS  Google Scholar 

  6. Pölloth B., Sibi M. P., Zipse H., Angew. Chem. Int. Ed., 2021, 60, 774.

    Article  Google Scholar 

  7. Marc L., Guillemer S., Schneider J.-M., Coquerel G., Chem. Eng. Res. Des., 2022, 178, 95.

    Article  CAS  Google Scholar 

  8. Fujiwara T., Sasaki M., Omata K., Kabuto C., Kabuto K., Takeuchi Y., Tetrahedron-Asymmetr., 2004, 15, 555.

    Article  CAS  Google Scholar 

  9. Zaitsev V. G., Sachava D. G., Yankovskaya G. S., Garbuz N. I., Chirality, 2000, 12, 287.

    Article  CAS  PubMed  Google Scholar 

  10. Heravi M. M., Zadsirjan V., Farajpour B., RSC Adv., 2016, 6, 30498.

    Article  CAS  Google Scholar 

  11. Chen L.-Y., Huang P.-Q., Eur. J. Org. Chem., 2023, 27, e202301131.

    Article  Google Scholar 

  12. Brand D. J., Steenkamp J. A., Omata K., Kabuto K., Fujiwara T., Takeuchi Y., Chirality, 2008, 20, 351.

    Article  CAS  PubMed  Google Scholar 

  13. Marques N. B. G., Jacob R. G., Perin G., Lenardão E. J., Alves D., Silva M. S., Chirality, 2019, 31, 41.

    Article  CAS  PubMed  Google Scholar 

  14. Seco J. M., Quiñoá E., Riguera R., Chem. Rev., 2012, 112, 4603.

    Article  CAS  PubMed  Google Scholar 

  15. Eagon S., DeLieto C., McDonald W. J., Haddenham D., Saavedra J., Kim J., Singaram B., J. Org. Chem., 2010, 75, 7717.

    Article  CAS  PubMed  Google Scholar 

  16. Bianchini C., Glendenning L., Zanobini F., Farnetti E., Graziani M., Nagy E., J. Mol. Catal. A-Chem., 1998, 132, 13.

    Article  Google Scholar 

  17. Sinisterra J. V., Garcia-Raso A., Cabello J. A., Marinas J. M., Synthesis, 1984, 502.

  18. Pang H., Williard P. G., Tetrahedron, 2020, 76, 130913.

    Article  CAS  Google Scholar 

  19. Barker S. D., Norris R. K., Aust. J. Chem., 1983, 36, 527.

    Article  CAS  Google Scholar 

  20. Nelson H., Richard W., Brown H., Medlin A., Light C., Heller S. T., Angew. Chem. Int. Ed., 2021, 60, 22818.

    Article  CAS  Google Scholar 

  21. Sheldrick G. M., Acta Cryst., 2015, C71, 3.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation, China (Nos. 2021A1515010197, 2023A1515012259), the Zhongshan Municipal Natural Science Foundation, China (Nos. 200805173640573, 210730214049987, 221018194369472), the Project of the Creative Research Group of Zhongshan City, China (No. CXTD2022011) and Dazhou Applied Basic Research Foundation, China (No. 23YYJC0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guilong Zhao or Huihui Ti.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2024_4011_MOESM1_ESM.pdf

A Concise, Practical Chiral Resolution Approach of Racemic (E)-4,4-dimethyl-1-(4-nitrophenyl)pent-1-en-3-ol to Its Both Enantiomers via Strategy of Diastereomeric Ester Formation and Crystallization Using Both N-Boc-D- and N-Boc-L-Phenylglycines as Chiral Auxiliaries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Yuan, J., Qin, Y. et al. A Concise, Practical Chiral Resolution Approach of Racemic (E)-4,4-Dimethyl-1-(4-nitrophenyl)pent-1-en-3-ol to Its both Enantiomers via Strategy of Diastereomeric Ester Formation and Crystallization Using both N-Boc-D- and N-Boc-L-phenylglycines as Chiral Auxiliaries. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4011-y

Keywords

Navigation