Skip to main content
Log in

Synthesis of multi-responsive poly(NIPA-co-DMAEMA)-PBA hydrogel nanoparticles in aqueous solution for application as glucose-sensitive insulin-releasing nanoparticles

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to present an innovative method for synthesizing pH-thermo-glucose responsive poly(NIPA-co-DMAEMA)-PBA hydrogel nanoparticles via single-step aqueous free radical polymerization.

Methods

The synthesis process involved free radical polymerization in an aqueous solution, and the resulting nanoparticles were characterized for their physical and chemical properties by 1H NMR, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM). Insulin-loaded poly(NIPA-co-DMAEMA)-PBA hydrogel nanoparticles were prepared and evaluated for their insulin capture and release properties at different pH and temperature, in addition to different glucose concentrations, with the release profile of insulin quantitatively evaluated using the Bradford method.

Results

1H NMR results confirmed successful PBA incorporation, and DLS outcomes consistently indicated a transition to a more hydrophobic state above the Lower Critical Solution Temperature (LCST) of NIPA and DMAEMA. While pH responsiveness exhibited variation, insulin release generally increased with rising pH from acidic to neutral conditions, aligning with the anticipated augmentation of anionic PBA moieties and increased hydrogel hydrophilicity. Increased insulin release in the presence of glucose, particularly for formulations with the lowest mol % PBA, along with a slight increase for the highest mol % PBA formulation when increasing glucose from 1 to 4 mg/mL, supported the potential of this approach for nanoparticle synthesis tailored for glucose-responsive insulin release.

Conclusions

This work successfully demonstrates a novel method for synthesizing responsive hydrogel nanoparticles and underscores their potential for controlled insulin release in response to glucose concentrations. The observed pH-dependent insulin release patterns and the influence of PBA content on responsiveness highlight the versatility and promise of this nanoparticle synthesis approach for applications in glucose-responsive drug delivery systems.

Graphical abstract

Poly(NIPA) nanoparticles containing PBA moieties are normally synthesized in two or more steps in the presence of organic solvents. Here we propose a new method for the synthesis of multiresponsive hydrogel poly(NIPA-co-DMAEMA)-PBA nanoparticles in aqueous medium in a single reaction to provide a fast and effective strategy for the production of glucose-responsive multi-systems in aqueous media from free radical polymerization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cannon MJ, Ng BP, Lloyd K, Reynolds J, Ely EK. J Diabetes Res.2022;1–9.

  2. Gholami M, Jackson NJ, Chung UYR, Duru OK, Shedd K, Soetenga S, Loeb T, Elashoff D, Hamilton AB, Mangione CM, Slusser W, Moin T. BMC Public Health. 2021;21:1.

    Article  Google Scholar 

  3. Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW, Unwin N, Wild SH, Williams R. R Diabetes Res Clin Pract. 2020;162:108086.

  4. Siegel KR, Ali MK, Zhou X, Ng BP, Jawanda S, Proia K, Zhang X, Gregg EW, Albright AL, Zhang P. Diabetes Care. 2020;43(7):1557–92.

    Article  CAS  PubMed  Google Scholar 

  5. Parveen R, Sehar N, Bajpai R, Agarwal NB. Diabetes Res Clin Pract. 2020;166:108295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lavrador P, Esteves MR, Gaspar VM, Mano JF. Adv Funct Mater. 2021;31:2005941.

    Article  CAS  Google Scholar 

  7. Chafran L, Carfagno A, Altalhi A, Bishop B. Polymers. 2022;14:4755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carfagno A, Lin S-C, Chafran L, Akhrymuk I, Callahan V, Po M, Zhu Y, Altalhi A, Durkin DP, Russo P, Vliet KA, Webb-Robertson B, Kehn-Hall K, Bishop B. Proteomics 2023;23:e2200237.

  9. Alvarez-Bautista A, Duarte CMM, Mendizábal E, Katime I. Des Monomers Polym. 2016;19:319–29.

    Article  CAS  Google Scholar 

  10. Herrmann A, Haag R, Schedler U. Adv Healthc Mater. 2021;10:2100062.

    Article  CAS  Google Scholar 

  11. Rosiak JM, Yoshii F. Nucl Instrum Methods Phys Res B NUCL INSTRUM METH B. 1999;151(1–4):56–64.

    Article  CAS  Google Scholar 

  12. Zhang Z, Wang S, Waterhouse G, Zhang Q, Li L. J Appl Polym Sci. 2020;137:48391.

    Article  CAS  Google Scholar 

  13. Jiménez RR, Carfagno A, Linhoff L, Gratwick B, Woodhams D, Chafran LS, Bletz MC, Bishop B, Muletz-Wolz CR. Appl Environ Microbiol. 2022;88(8):e01818-01821.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Safavi-Mirmahalleh SA, Salami-Kalajahi M, Roghani-Mamaqani H. Environ Sci Pollut Res. 2020;27:28091–103.

    Article  CAS  Google Scholar 

  15. Wang C, Lin B, Zhu H, Bi F, Xiao S, Wang L, Gai G, Zhao L. Molecules. 2019;24:1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Najmeddine AA, Saeed M, Beadham IG, ElShaer A. PharmaNutrition2021;18:100280.

  17. Wu JZ, Yang Y, Li S, Shi A. Int J Nanomed. 2019;14:8059–72.

  18. Ma Q, Bian L, Zhao X, Tian X, Yin H, Wang Y, Shi A, Wu J. Mater Today Bio. 2022;13:100181.

  19. Matsumoto A, Ikeda S, Harada A, Kataoka K. Biomacromol. 2003;4(5):1410–6.

    Article  CAS  Google Scholar 

  20. Matsumoto A, Yoshida R, Kataoka K. Biomacromol. 2004;5(3):1038–45.

    Article  CAS  Google Scholar 

  21. Zhang Y, Guan Y, Zhou S. Biomacromol. 2006;7(11):3196–201.

    Article  CAS  Google Scholar 

  22. Tang Z, Guan Y, Zhang Y. Polym Chem. 2014;5:1782–90.

    Article  CAS  Google Scholar 

  23. Elshaarani T, Yu H, Wang L, Lin L, Wang N, Naveed KR, Zhang L, Han Y, Fahad S, Ni Z. Eur Polym J. 2020;125:109505.

  24. Wu JZ, Williams GR, Li HY, Wang D, Wu H, Li SD, Zhu LM. Int J Nanomed. 2017;12:4037–57.

  25. Farooqi ZH, Khan A, Siddiq M. Polym Int. 2011;60:1481–6.

    Article  CAS  Google Scholar 

  26. Shi Q, Jackowski G. In: Hames BD, editor. Gel electrophoresis of proteins: a practical Approach. 1sted. ed. Oxford: Publisher:Oxford University; 1998. pp. 13–34.

  27. Arcos-Hernandez M, Naidjonoka P, Butler SJ, Nylander T, Stålbrand H, Jannasch P. Biomacromol. 2021;22(6):2338–51.

    Article  CAS  Google Scholar 

  28. Monaco A, Drain B, Becer CR. Polym Chem. 2021;12:5229–38.

    Article  CAS  Google Scholar 

  29. Cao J, Liu S, Chen Y, Shi L, Zhang Z. Polym Chem. 2014;5(17):5029–36.

    Article  CAS  Google Scholar 

  30. Sasaki S. J Phys Chem. 2016;120(1):184–92.

    Article  CAS  Google Scholar 

  31. Abdelaty MSA. J Polym Res. 2021;28:213.

    Article  CAS  Google Scholar 

  32. Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Polymers. 2020;12:580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS. J Am Chem Soc. 2009;131(26):9304–10.

    Article  CAS  PubMed  Google Scholar 

  34. Dong Z, Wei H, Mao J, Wang D, Yang M, Bo S, Ji X. Polymer. 2012;53(10):2074–84.

    Article  CAS  Google Scholar 

  35. Du H, Wickramasinghe R, Qian X. J Phys Chem. 2010;114(49):16594–604.

    Article  CAS  Google Scholar 

  36. Ma G–H, Nagai M, Omi S. J Appl Polym Sci. 2001;79:2408–24.

    Article  CAS  Google Scholar 

  37. Roointan A, Farzanfar J, Mohammadi-Samani S, Behzad-Behbahani A, Farjadian F. Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA) nanohydrogel. Int J Pharm. 2018;552(1–2):301–11. https://doi.org/10.1016/j.ijpharm.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  38. Orakdogen N. J Polym Res. 2012;19:9914.

    Article  Google Scholar 

  39. Wang Y, Zhang X, Han Y, Cheng C, Li C. Carbohydr Polym. 2012;89(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng C, Guo Q, Wu Z, Sun L, Zhang Z, Li C, Zhang X. Eur J Pharm Sci. 2013;49(4):474–82.

    Article  CAS  PubMed  Google Scholar 

  41. Shiomori K, Ivanov AE, Galaev IY, Kawano Y, Mattiasson B. Macromol Chem Phys. 2004;205:27–34.

    Article  CAS  Google Scholar 

  42. Burdukova E, Li H, Ishida N, O’Shea JP, Franks GV. J Colloid Interface Sci. 2010;342(2):586–92.

    Article  CAS  PubMed  Google Scholar 

  43. Kardos A, Gilányi T, Varga I. J Colloid Interface Sci. 2019;557(1):793–806.

  44. Guo H, Li H, Gao J, Zhao G, Ling L, Wang B, Guo Q, Gu Y, Li C. Polym Chem. 2016;7:3189–99.

    Article  CAS  Google Scholar 

  45. Wu J, Bremner DH, Li H, Sun X, Zhu L. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery. Mater Sci Eng: C. 2016;69:1026–35. https://doi.org/10.1016/j.msec.2016.07.078.

  46. Hei M, Wu H, Fu Y, Xu Y, Zhu W. J Drug Deliv Sci Technol. 2019;51:320–6.

    Article  CAS  Google Scholar 

  47. Dey GR, Saha A. ACS Biomater Sci Eng. 2021;7(9):4645–58.

    Article  CAS  PubMed  Google Scholar 

  48. Sun L, Zhang X, Zheng C, Wu Z, Xia X, Li C. RSC Adv. 2012;2(26):9904–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of College of Science (COS) - George Mason University (GMU); Dr. Barney Bishop and Dr. Remi Veneziano. All the authors contributed equally to this work.

Funding

This project was funded by the College of Science (COS), George Mason University (GMU).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Liana S. Chafran and Amy Carfagno. The first draft of the manuscript was written by Liana S. Chafran and all authors contributed critically to give final approval for publication.

Corresponding author

Correspondence to Liana Chafran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chafran, L., Carfagno, A. Synthesis of multi-responsive poly(NIPA-co-DMAEMA)-PBA hydrogel nanoparticles in aqueous solution for application as glucose-sensitive insulin-releasing nanoparticles. J Diabetes Metab Disord (2024). https://doi.org/10.1007/s40200-024-01421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-024-01421-7

Keywords

Navigation