Skip to main content

Advertisement

Log in

Immune characteristics associated with lymph node metastasis in early-stage NSCLC

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Tumor metastasis significantly impacts the prognosis of non-small cell lung cancer (NSCLC) patients, with lymph node (LN) metastasis being the most common and early form of spread. With the development of adjuvant immunotherapy, increasing attention has been paid to the tumor-draining lymph nodes(TDLN) in early-stage NSCLC, especially tumor-metastatic lymph nodes, which provides poor prognostic information but has potential benefits in adjuvant treatment.

Methods

We showed the remodeled immune environment in TDLNs through using TCR-seq to analyse 24 primary lung cancer tissues and 134 LNs from 24 lung cancer patients with or without LN metastasis. Additionally, we characterized the spatial profiling of immunocytes and tumor cells in TDLNs and primary tumor sites through using multi-IHC.

Results

We found the remodeled immune environment in TDLNs through analyzing primary lung cancer tissues and LNs from NSCLC patients with or without LN metastasis. Considering the intricate communication between tumor and immunocytes, we further subdivided TDLNs, revealing that metastasis-negative LNs from LN-metastatic patients (MNLN) exhibited greater immune activation, exhaustion, and memory in comparison to both metastasis-positive LNs (MPLN) and TDLNs from non-LN-metastatic patients (NMLN).

Conclusions

Our data indicate that LN metastasis facilitated tumor-specific antigen presentation in TDLNs and induces T cell priming, while existing tumor cells generate an immune-suppressive environment in MPLNs through multiple mechanisms. These findings contribute to a comprehensive understanding of the immunological mechanisms through which LN metastasis influences tumor progression and plays a role in immunotherapy for NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran Jr., Y.L. Wu, L. Paz-Ares, Lung cancer: current therapies and new targeted treatments. Lancet 389(10066), 299–311 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P, Mitchell A, Bolejack V; International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Boards, and Participating Institutions; International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee Advisory Boards and Participating Institutions. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 11(1):39–51 (2016)

  3. M.J. O’Melia, M.P. Manspeaker, S.N. Thomas, Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC. Cancer. Immunol. Immunother. 70(8), 2179–2195 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. V. Murthy, J. Minehart, D. Sterman, Local immunotherapy of cancer: innovative approaches to harnessing tumor-specific immune responses. J. Natl. Cancer. Inst. 109(12), 117–129 (2017)

    Article  Google Scholar 

  5. U.H. von Andrian, T.R. Mempel, Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3(11), 867–878 (2003)

    Article  Google Scholar 

  6. J.H. Lee, H. Torisu-Itakara, A.J. Cochran, A. Kadison, Y. Huynh, D.L. Morton, R. Essner, Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 11(1), 107–112 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. A.S. Mansfield, S.G. Holtan, T.E. Grotz, J.B. Allred, J.W. Jakub, L.A. Erickson, S.N. Markovic, Regional immunity in melanoma: immunosuppressive changes precede nodal metastasis. Mod. Pathol. 24(4), 487–494 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. K.M. van Pul, R.J.C.L.M. Vuylsteke, R. van de Ven, E.A. Te Velde, E.J.T. Rutgers, P.M. van den Tol, H.B.A.C. Stockmann, T.D. de Gruijl, Selectively hampered activation of lymph node-resident dendritic cells precedes profound T cell suppression and metastatic spread in the breast cancer sentinel lymph node. J. Immunother. Cancer 7(1), 133 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  9. K. Matsuura, Y. Yamaguchi, H. Ueno, A. Osaki, K. Arihiro, T. Toge, Maturation of dendritic cells and T-cell responses in sentinel lymph nodes from patients with breast carcinoma. Cancer 106(6), 1227–1236 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. M.F.C.M. van den Hout, B.D. Koster, B.J.R. Sluijter, B.G. Molenkamp, R. van de Ven, A.J.M. van den Eertwegh, R.J. Scheper, P.A.M. van Leeuwen, M.P. van den Tol, T.D. de Gruijl, Melanoma sequentially suppresses different DC subsets in the sentinel lymph node, affecting disease spread and recurrence. Cancer Immunol. Res. 5(11), 969–977 (2017)

    Article  PubMed  Google Scholar 

  11. L. Deng, H. Zhang, Y. Luan, J. Zhang, Q. Xing, S. Dong, X. Wu, M. Liu, S. Wang, Accumulation of foxp3+ T regulatory cells in draining lymph nodes correlates with disease progression and immune suppression in colorectal cancer patients. Clin. Cancer Res. 16(16), 4105–4112 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. G. Li, D. Liu, T.K. Cooper, E.T. Kimchi, X. Qi, D.M. Avella, N. Li, Q.X. Yang, M. Kester, C.B. Rountree, J.T. Kaifi, D.J. Cole, D.C. Rockey, T.D. Schell, K.F. Staveley-O’Carroll, Successful chemoimmunotherapy against hepatocellular cancer in a novel murine model. J. Hepatol. 66(1), 75–85 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. N.G. Núñez, J. Tosello Boari, R.N. Ramos, W. Richer, N. Cagnard, C.D. Anderfuhren, L.L. Niborski, J. Bigot, D. Meseure, P. De La Rochere, M. Milder, S. Viel, D. Loirat, L. Pérol, A. Vincent-Salomon, X. Sastre-Garau, B. Burkhard, C. Sedlik, O. Lantz, S. Amigorena, E. Piaggio, Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nat. Commun. 11(1), 3272 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  14. S.P.L. Saw, B.H. Ong, K.L.M. Chua, A. Takano, D.S.W. Tan, Revisiting neoadjuvant therapy in non-small-cell lung cancer. Lancet Oncol. 22(11), e501–e516 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. J.E. Chaft, Y. Shyr, B. Sepesi, P.M. Forde, Preoperative and postoperative systemic therapy for operable non-small-cell lung cancer. J. Clin. Oncol. 40(6), 546–555 (2022). https://doi.org/10.1200/JCO.21.01589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. Ling, N. Li, L. Li, C. Guo, J. Wei, P. Yuan, F. Tan, X. Tao, S. Wang, Z. Wang, N. Wu, J. Wang, J. Ying, S. Gao, J. He, Different pathologic responses to neoadjuvant anti-PD-1 in primary squamous lung cancer and regional lymph nodes. NPJ Precis. Oncol. 4(1), 32 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A.K. Molodtsov, N. Khatwani, J.L. Vella, K.A. Lewis, Y. Zhao, J. Han, D.E. Sullivan, T.G. Searles, N.K. Preiss, T.B. Shabaneh, P. Zhang, A.R. Hawkes, B.T. Malik, F.W. Kolling 4th., E.J. Usherwood, S.L. Wong, J.D. Phillips, K. Shirai, C.V. Angeles, S. Yan, T.J. Curiel, Y.H. Huang, C. Cheng, M.J. Turk, Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma. Immunity 54(9), 2117-2132.e7 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.M. Schenkel, R.H. Herbst, D. Canner, A. Li, M. Hillman, S.L. Shanahan, G. Gibbons, O.C. Smith, J.Y. Kim, P. Westcott, W.L. Hwang, W.A. Freed-Pastor, G. Eng, M.S. Cuoco, P. Rogers, J.K. Park, M.L. Burger, O. Rozenblatt-Rosen, L. Cong, K.E. Pauken, A. Regev, T. Jacks, Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54(10), 2338-2353.e6 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K.A. Connolly, M. Kuchroo, A. Venkat, A. Khatun, J. Wang, I. William, N.I. Hornick, B.L. Fitzgerald, M. Damo, M.Y. Kasmani, C. Cui, E. Fagerberg, I. Monroy, A. Hutchins, J.F. Cheung, G.G. Foster, D.L. Mariuzza, M. Nader, H. Zhao, W. Cui, S. Krishnaswamy, N.S. Joshi, A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6(64), eabg7836 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Binnewies, A.M. Mujal, J.L. Pollack, A.J. Combes, E.A. Hardison, K.C. Barry, J. Tsui, M.K. Ruhland, K. Kersten, M.A. Abushawish, M. Spasic, J.P. Giurintano, V. Chan, A.I. Daud, P. Ha, C.J. Ye, E.W. Roberts, M.F. Krummel, Unleashing Type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177(3), 556-571.e16 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A.W. Lund, F.V. Duraes, S. Hirosue, V.R. Raghavan, C. Nembrini, S.N. Thomas, A. Issa, S. Hugues, M.A. Swartz, VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1(3), 191–199 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. R.D. Leone, J.D. Powell, Metabolism of immune cells in cancer. Nat. Rev. Cancer 20(9), 516–531 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N.E. Reticker-Flynn, W. Zhang, J.A. Belk, P.A. Basto, N.K. Escalante, G.O.W. Pilarowski, A. Bejnood, M.M. Martins, J.A. Kenkel, I.L. Linde, S. Bagchi, R. Yuan, S. Chang, M.H. Spitzer, Y. Carmi, J. Cheng, L.L. Tolentino, O. Choi, N. Wu, C.S. Kong, A.J. Gentles, J.B. Sunwoo, A.T. Satpathy, S.K. Plevritis, E.G. Engleman, Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185(11), 1924-1942.e23 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N. Prokhnevska, M.A. Cardenas, R.M. Valanparambil et al., CD8(+) T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107-124.e105 (2023)

    Article  CAS  PubMed  Google Scholar 

  25. S.P. Leong, M. Zuber, R.L. Ferris, Y. Kitagawa, R. Cabanas, C. Levenback, M. Faries, S. Saha, Impact of nodal status and tumor burden in sentinel lymph nodes on the clinical outcomes of cancer patients. J. Surg. Oncol. 103(6), 518–530 (2011)

    Article  PubMed  Google Scholar 

  26. F. Dammeijer, M. van Gulijk, E.E. Mulder, M. Lukkes, L. Klaase, T. van den Bosch, M. van Nimwegen, S.P. Lau, K. Latupeirissa, S. Schetters, Y. van Kooyk, L. Boon, A. Moyaart, Y.M. Mueller, P.D. Katsikis, A.M. Eggermont, H. Vroman, R. Stadhouders, R.W. Hendriks, J.V. Thüsen, D.J. Grünhagen, C. Verhoef, T. van Hall, J.G. Aerts, The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38(5), 685-700.e8 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. M.H. Spitzer, Y. Carmi, N.E. Reticker-Flynn, S.S. Kwek, D. Madhireddy, M.M. Martins, P.F. Gherardini, T.R. Prestwood, J. Chabon, S.C. Bendall, L. Fong, G.P. Nolan, E.G. Engleman, Systemic immunity is required for effective cancer immunotherapy. Cell 168(3), 487-502.e15 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.F. Fransen, M. Schoonderwoerd, P. Knopf, M.G. Camps, L.J. Hawinkels, M. Kneilling, T. van Hall, F. Ossendorp, Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3(23), e124507 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  29. M. Provencio, E. Nadal, A. Insa, M.R. García-Campelo, J. Casal-Rubio, M. Dómine, M. Majem, D. Rodríguez-Abreu, A. Martínez-Martí, C.J. De Castro, M. Cobo, G. López Vivanco, E. Del Barco, R. Bernabé Caro, N. Viñolas, I. Barneto Aranda, S. Viteri, E. Pereira, A. Royuela, M. Casarrubios, C. Salas Antón, E.R. Parra, I. Wistuba, V. Calvo, R. Laza-Briviesca, A. Romero, B. Massuti, A. Cruz-Bermúdez, Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21(11), 1413–1422 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. K.E. Yost, A.T. Satpathy, D.K. Wells, Y. Qi, C. Wang, R. Kageyama, K.L. McNamara, J.M. Granja, K.Y. Sarin, R.A. Brown, R.K. Gupta, C. Curtis, S.L. Bucktrout, M.M. Davis, A.L.S. Chang, H.Y. Chang, Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25(8), 1251–1259 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z. Ding, Q. Li, R. Zhang, L. Xie, Y. Shu, S. Gao, P. Wang, X. Su, Y. Qin, Y. Wang, J. Fang, Z. Zhu, X. Xia, G. Wei, H. Wang, H. Qian, X. Guo, Z. Gao, Y. Wang, Y. Wei, Q. Xu, H. Xu, L. Yang, Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct. Target Ther. 6(1), 26 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P.A. Ott, Z. Hu, D.B. Keskin, S.A. Shukla, J. Sun, D.J. Bozym, W. Zhang, A. Luoma, A. Giobbie-Hurder, L. Peter, C. Chen, O. Olive, T.A. Carter, S. Li, D.J. Lieb, T. Eisenhaure, E. Gjini, J. Stevens, W.J. Lane, I. Javeri, K. Nellaiappan, A.M. Salazar, H. Daley, M. Seaman, E.I. Buchbinder, C.H. Yoon, M. Harden, N. Lennon, S. Gabriel, S.J. Rodig, D.H. Barouch, J.C. Aster, G. Getz, K. Wucherpfennig, D. Neuberg, J. Ritz, E.S. Lander, E.F. Fritsch, N. Hacohen, C.J. Wu, An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662), 217–221 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M.C. Sellars, C.J. Wu, E.F. Fritsch, Cancer vaccines: Building a bridge over troubled waters. Cell 185(15), 2770–2788 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S.H. Chiou, D. Tseng, A. Reuben, V. Mallajosyula, I.S. Molina, S. Conley, J. Wilhelmy, A.M. McSween, X. Yang, D. Nishimiya, R. Sinha, B.Y. Nabet, C. Wang, J.B. Shrager, M.F. Berry, L. Backhus, N.S. Lui, H.A. Wakelee, J.W. Neal, S.K. Padda, G.J. Berry, A. Delaidelli, P.H. Sorensen, E. Sotillo, P. Tran, J.A. Benson, R. Richards, L. Labanieh, D.D. Klysz, D.M. Louis, S.A. Feldman, M. Diehn, I.L. Weissman, J. Zhang, I.I. Wistuba, P.A. Futreal, J.V. Heymach, K.C. Garcia, C.L. Mackall, M.M. Davis, Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity 54(3), 586-602.e8 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P.C. Rosato, S. Wijeyesinghe, J.M. Stolley, C.E. Nelson, R.L. Davis, L.S. Manlove, C.A. Pennell, B.R. Blazar, C.C. Chen, M.A. Geller, V. Vezys, D. Masopust, Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10(1), 567 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R.S. Andersen, C.A. Thrue, N. Junker, R. Lyngaa, M. Donia, E. Ellebæk, I.M. Svane, T.N. Schumacher, P. Thor Straten, S.R. Hadrup, Dissection of T-cell antigen specificity in human melanoma. Cancer Res. 72(7), 1642–1650 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Simoni, E. Becht, M. Fehlings, C.Y. Loh, S.L. Koo, K.W.W. Teng, J.P.S. Yeong, R. Nahar, T. Zhang, H. Kared, K. Duan, N. Ang, M. Poidinger, Y.Y. Lee, A. Larbi, A.J. Khng, E. Tan, C. Fu, R. Mathew, M. Teo, W.T. Lim, C.K. Toh, B.H. Ong, T. Koh, A.M. Hillmer, A. Takano, T.K.H. Lim, E.H. Tan, W. Zhai, D.S.W. Tan, I.B. Tan, E.W. Newell, Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557(7706), 575–579 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. I.K. Choi, Z. Wang, Q. Ke, M. Hong, D.W. Paul Jr., S.M. Fernandes, Z. Hu, J. Stevens, I. Guleria, H.J. Kim, H. Cantor, K.W. Wucherpfennig, J.R. Brown, J. Ritz, B. Zhang, Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature 590(7844), 157–162 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. J.H. Newman, C.B. Chesson, N.L. Herzog, Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl. Acad. Sci. U S A 117(2), 1119–1128 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. V. Gopalakrishnan, C.N. Spencer, L. Nezi, Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371), 97–103 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. C.A. Bessell, A. Isser, J.J. Havel, Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight. 5(8), e135597 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  42. A. Fluckiger, R. Daillère, M. Sassi, Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369(6506), 936–942 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. M. Röcken, J.F. Urban, E.M. Shevach, Infection breaks T-cell tolerance. Nature 359(6390), 79–82 (1992)

    Article  PubMed  Google Scholar 

Download references

Funding

This investigation was supported by the Natural Science Foundation of China (81903020), the Natural Science Foundation of Hunan Province (2022JJ30072), the National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (Lung Cancer).

Author information

Authors and Affiliations

Authors

Contributions

Ziyu Zhang: The main manuscript text writing, data curation, formal analysis, investigation, visualization, methodology, writing–original draft, writing–review and editing. Li Li: Fig. 45 preparation, data curation, formal analysis, investigation, visualization. Yang Gao: Resource, formal analysis, investigation. Xiaoxiong Xiao: Resource, formal analysis, investigation. Liyan Ji: Fig. 13 preparation, data curation, formal analysis, investigation, methodology. Zhipeng Zhou: Fig. 13 preparation, data curation, formal analysis, investigation, methodology. Juan Jiang: Resources, data curation, formal analysis, investigation. Shiqing Liu: Data curation, formal analysis, investigation. Jian An: Resources, data curation, formal analysis, investigation. Pengbo Deng: Resources, data curation, formal analysis, investigation. NanNan Du: Data curation, formal analysis, investigation. Pansong Li: Data curation, formal analysis, investigation. Xuefeng Xia: Investigation, methodology. Chengping Hu: Conceptualization, formal analysis, supervision, funding acquisition, methodology, writing–review, and editing. Min Li: Conceptualization, resources, formal analysis, supervision, funding acquisition, visualization, writing–original draft, project administration, writing–review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Min Li.

Ethics declarations

Ethics approval

This study was approved by the Institutional Review Board (IRB) of Xiangya Hospital. The study was conducted in accordance with the Declaration of Helsinki.

Consent to participate

Written informed content was obtained from every patient.

Consent for publication

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

13402_2023_873_MOESM2_ESM.tif

Supplementary file2 Figure S1 Correlation and comparison of TCR diversity among tumor, LNs, and blood. (A) The association of Shannon and clonality between tumor and age using Pearson coefficiency. (B) The correlation of Shannon and clonality between blood and age using Pearson coefficiency. Comparison of clonality (C) and Shannon (D) at different tumor stages. (E) TCR diversity on different pathological tumors. (F) Pearson coefficiency of Shannon between tumor and blood at metastasis and non-metastatic patients. (G) The correlation of Shannon between LNs and tumor or PBMC (TIF 5500 KB)

13402_2023_873_MOESM3_ESM.tif

Supplementary file3 Figure S2 Comparison of Shannon and richness among LNs, tumor, and blood. The violin plots showing Shannon index (A) and richness (B) among blood, LNs and tumor. Two sided Mann-Whitney U test was performed to test the significance between groups. The box plots depicting Shannon index (C) and richness (D) of tumor, LNs, and blood between metastatic and non-metastatic patients (TIF 3000 KB)

13402_2023_873_MOESM4_ESM.jpg

Supplementary file4 Figure S3 T cell subsets and TCR diversity/characterization in LNs. (A) The Pearson coefficiency of clonality between tumor and LNs at the presence (left panel) or absence (middle panel) of metastasis in metastatic patients and non-metastatic patients (right panel). (B) Comparison of clonality among MPLN, MNLN, and NMLN at different lymph node staging. (C) The density of CD4+ and CD8+cells among MPLN, MNLN, and NMLN. (D) The ratio of viral-associated TCRs to non-viral TCRs among MPLN, MNLN, and NMLN. (E) The bar plot illustrates the length of CDR3 amino acid between metastasis-positive LNs and metastasis-negative LNs (JPG 1115 KB)

13402_2023_873_MOESM5_ESM.tif

Supplementary file5 Figure S4 Box plots depicting the frequency of V gene and J genes among MPLN, MNLN, and NMLN (n =134). Two-sided Man-Whitney U test (TIF 2733 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, L., Gao, Y. et al. Immune characteristics associated with lymph node metastasis in early-stage NSCLC. Cell Oncol. 47, 447–461 (2024). https://doi.org/10.1007/s13402-023-00873-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00873-y

Keywords

Navigation