Skip to main content

Advertisement

Log in

Enzymatic valorization of alkali-treated chickpea straw and sunflower stalks as high fibrous agricultural wastes for sustainable ruminant nutrition

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Chickpea straw (CS) and sunflower stalks (SS) are agricultural wastes with high fibre content and low digestibility. To improve their nutritional value and ruminal digestibility, the effects of NaOH and urea treatments combined with exogenous fibrolytic enzymes (EFE) were investigated. The untreated CS (CCS) and SS (CSS), 4% NaOH treated CS (NCS) and SS (NSS), and 4% urea-treated CS (UCS) and SS (USS) were supplemented by two enzymatic complexes (DCX and MaxFiber) composed mainly of cellulase and xylanase activities at increasing doses: 0, 1, 2, 5, and 10 μL DCX/g DM and 0, 0.5, 1, 2, and 4 mg MaxFiber/g DM. The results of in vitro ruminal fermentation proved that the DCX was more efficient than the MaxFiber complex for both CCS and CSS. Indeed, it improved the rate and the extent of ruminal fermentation, metabolizable energy, organic matter digestibility, and volatile fatty acids (p-value <0.05) by 5 %, 47%, 12%, 12.8%, and 23.8%, respectively, for CCS using 10 μl/g DM and 20.8%, 27.6%, 12.9%, 11.8%, and 22.8%, respectively, for CSS by using 5 μl/g DM. The association between alkali treatments and EFE was depending to the supplemented enzymatic complex, the treated substrate and the alkali treatment. For the CS, the association between alkali and EFE stimulated the ruminal fermentation and improved the digestive use. However, it decreased the efficiency of EFE for SS. Overall, the use of EFE to CS and SS could provide a valuable source of energy from digestible fibre for ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets and materials used during the current study are available from the corresponding author upon reasonable request.

References

  1. Sivakumar D, Srikanth P, Ramteke PW, Nouri J (2022) Agricultural waste management generated by agro-based industries using biotechnology tools. Global J Environ Sci Manage 8(2):281–296. https://doi.org/10.22034/gjesm.2022.02.10

    Article  Google Scholar 

  2. Aghajanzadeh-Golshani A, Maheri-Sis N, Baradaran-Hasanzadeh A, Asadi-Dizaji A, Mirzaei-Aghsaghali A, Dolgari-Sharaf J (2012) Determining nutrients degradation kinetics of chickpea (Cicer arietinum) straw using nylon bag technique in sheep. Open Vet J 2(1):54–57

    Article  Google Scholar 

  3. Khademi AR, Hashemzadeh F, Khorvash M, Mahdavi AH, Pazoki A, Ghaffari MH (2022) Use of exogenous fibrolytic enzymes and probiotic in finely ground starters to improve calf performance. Sci Rep 12(1):11942. https://doi.org/10.1038/s41598-022-16070-0

    Article  Google Scholar 

  4. Jabri J, Abid K, Ben Said S, Yaich H, Malek A, Rekhis J, Kamoun M (2022) Effect of fibrolytic enzyme supplementation of urea-treated wheat straw on nutrient intake, digestion, growth performance, and blood parameters of growing lambs. Small Rumin Res 217. https://doi.org/10.1016/j.smallrumres.2022.106840

  5. Bachmann M, Martens SD, LeBrech Y, Kervern G, Bayreuther R, Steinhöfel O, Zeyner A (2022) Physicochemical characterisation of barley straw treated with sodium hydroxide or urea and its digestibility and in vitro fermentability in ruminants. Sci Rep 12(1):20530. https://doi.org/10.1038/s41598-022-24738-w

    Article  Google Scholar 

  6. Carrillo-Díaz MI, Miranda-Romero LA, Chávez-Aguilar G, Zepeda-Batista JL, González-Reyes M, García-Casillas AC, Tirado-González DN, Tirado-Estrada G (2022) Improvement of ruminal neutral detergent fibre degradability by obtaining and using exogenous fibrolytic enzymes from white-rot fungi. Animals 12(7):843. https://doi.org/10.3390/ani12070843

    Article  Google Scholar 

  7. Arriola KG, Oliveira AS, Ma ZX, Lean IJ, Giurcanu MC, Adesogan AT (2017) A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J Dairy Sci 100(6):4513–4527. https://doi.org/10.3168/jds.2016-12103

    Article  Google Scholar 

  8. Tirado-González DN, Tirado-Estrada G, Miranda-Romero LA, Ramírez-Valverde R, Medina-Cuéllar SE, Salem AZM (2021) Effects of addition of exogenous fibrolytic enzymes on digestibility and milk and meat production—a systematic review. Ann Anim Sci 21(4):1159–1192. https://doi.org/10.2478/aoas-2021-0001

    Article  Google Scholar 

  9. Dulphy JP, Breton J, Bienaime A, Louyot JM (1982) Etude de la valeur alimentaire des pailles de céréales traitées ou non à la soude : I-Influence du traitement à la soude. Annales de Zootechnie 31:195–214

    Article  Google Scholar 

  10. Chermiti A, Nefzaoui A, Cordesse R, Amri T, Laajili M (1989) Paramètres d’uréolyse et digestibilité de la paille traitée à l’urée. Ann Zootech, INRA/EDP Sci 38:63–72

    Article  Google Scholar 

  11. Association of Official Analytical Chemists (1995) Official Methods of Analysis of AOAC International, 16th edn. AOAC International, Arlington, VA

    Google Scholar 

  12. VanSoest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  13. Jabri J, Abid K, Yaich H, Malek A, Rekhis J, Kamoun M (2022) Evaluation of the efficacy of varying xylanase to cellulase ratio on ruminal fermentation of untreated and alkali treated oat straw. Research Square Preprint (version 1) [accessed 2023 January 30]. https://doi.org/10.21203/rs.3.rs-2199970/v1

    Book  Google Scholar 

  14. Wood TM, Bhat KM (1988) Biomass part A: cellulose and hemicellulose. Meth Enzymol 160:87–112. https://doi.org/10.1016/0076-6879(88)60109-1

    Article  Google Scholar 

  15. Bailey MJ, Biely P, Poutanen K (1992) Inter laboratory testing of methods for assay of xylanase activity. J Biotech 23:257–270. https://doi.org/10.1016/0168-1656(92)90074-J

    Article  Google Scholar 

  16. Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France JA (1994) Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48:185–197. https://doi.org/10.1016/0377-8401(94)90171-6

    Article  Google Scholar 

  17. INRA (2007) Alimentation des bovins, ovins et caprins. Besoins des animaux - valeurs des aliments. Tables Inra 2007. Quae éditions

    Google Scholar 

  18. Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28:7–55

    Google Scholar 

  19. Beauchemin KA, Rode L, Vincent JS (1998) Enzyme additives for ruminant feeds. United States Patent, 5,720,971.

    Google Scholar 

  20. Getachew G, Blummel M, Makkar HPS, Becker K (1998) In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim Feed Sci Technol 72:261–281. https://doi.org/10.1016/S0377-8401(97)00189-2

    Article  Google Scholar 

  21. Groot JCJ, Cone JW, Williams BA, Debersaques FMA, Lantinga EA (1996) Multiphasic analysis of gas production kinetics for invitro fermentation of ruminant feeds. Anim Feed Sci Technol 64:77–89. https://doi.org/10.1016/S0377-8401(96)01012-7

    Article  Google Scholar 

  22. Yang HJ, Tamminga S, Williams BA, Dijkstra J, Boer H (2005) In vitro gas and volatile fatty acids production profiles of barley and maize and their soluble and washout fractions after feed processing. Anim Feed Sci Technol 120:125–140. https://doi.org/10.1016/j.anifeedsci.2005.01.007

    Article  Google Scholar 

  23. Duncan DB (1955) Multiple F and multiple “F” test. Biometrics 11:1–42. https://doi.org/10.2307/3001478

    Article  MathSciNet  Google Scholar 

  24. de Souza JB, Michelin M, Amâncio AmÃcncio FLR, Vital Brazil OA, Polizeli MTM, Ruzene DS, Silva DP, Mendonça MC, López JA (2020) Sunflower stalk as a carbon source inductive for fungal xylanase production. Ind Crops Prod 153. https://doi.org/10.1016/j.indcrop.2020.112368

  25. Durmaz E, Ates S (2021) Comparison of properties of cellulose nanomaterials obtained from sunflower stalks. Cellul Chem Technol 55(7-8):755–770

    Article  Google Scholar 

  26. Maheri-Sis N, Aghajanzadeh-Golshani A, Cheraghi H, Ebrahimnezhad Y, Ghoaso JG, Asaadi-Dizaji A (2011) Dry matter degradation kinetics and metabolizable energy of chickpea (Cicer arietinum) straw in ruminants. Res J Biol Sci 6(12):635–638

    Article  Google Scholar 

  27. Jabri J, Abid K, Yaich H, Malek A, Rekhis J, Kamoun M (2019) Effect of combining exogenous fibrolytics enzymes supplementation with alkali and acid pre-treatments on wheat straw hydrolysis and ruminal fermentation. Indian J Anim Sci 89:780–785. https://doi.org/10.56093/ijans.v89i7.92051

    Article  Google Scholar 

  28. Li J, Liu X, Zheng Q, Chen L, Huang L, Ni Y, Ouyang X (2019) Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibres. Cellulose 26:6393–6400. https://doi.org/10.1007/s10570-019-02587-7

    Article  Google Scholar 

  29. Schroeder BG, Istanbullu HB, Schmidt M, Logroño W, Harms H, Nikolausz M (2023) Effect of alkaline and mechanical pretreatment of wheat straw on enrichment cultures from Pachnoda marginata larva gut. Fermentation 9:60. https://doi.org/10.3390/fermentation9010060

    Article  Google Scholar 

  30. Wang W, Wang X, Zhang Y, Yu Q, Tan X, Zhuang X, Yuan Z (2020) Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Ind Crops Prod 145:112145. https://doi.org/10.1016/j.indcrop.2020.112145

    Article  Google Scholar 

  31. Lou H, Lin M, Zeng M, Cai C, Pang Y, Yang D, Qiu X (2018) Effect of urea on the enzymatic hydrolysis of lignocellulosic substrate and its mechanism. Bioenerg Res 11:456–465. https://doi.org/10.1007/s12155-018-9910-7

    Article  Google Scholar 

  32. Martens S, Wildner V, Schulze J, Richardt W, Greef JM, Zeyner A, Steinhöfel O (2022) Chemical treatment of straw for ruminant feeding with NaOH or urea – investigative steps via practical application under current European Union conditions. J Sci Food Agric 31(4):260–281. https://doi.org/10.23986/afsci.115262

    Article  Google Scholar 

  33. dos Santos APM, Santos EM, Silva de Oliveira J, Pinto de Carvalho GG, Leal G, de Araújo G, Moura Zanine A, Martins Araújo Pinho R, Ferreira DJ, da Silva Macedo AJ, Pereira Alves J (2021) Effect of urea on gas and effluent losses, microbial populations, aerobic stability and chemical composition of corn (Zea mays L.) silage. Rev Fac Cienc 53(1):309–319. https://doi.org/10.48162/rev.39.030

    Article  Google Scholar 

  34. Yitbarek M, Tamir B (2014) Silage additives: review. Open J Appl Sci 4:258–274. https://doi.org/10.4236/ojapps.2014.45026

    Article  Google Scholar 

  35. Abid K, Jabri J, Yaich H, Malek A, Rekhis J, Kamoun M (2022) Improving the nutritional value and rumen fermentation characteristics of sesame seed coats through bioconversion approach using exogenous fibrolytic enzymes produced by Trichoderma longibrachiatum. Biomass Conv Bioref, 1–9. https://doi.org/10.1007/s13399-022-03402-3

  36. Marcos CN, García-Rebollar P, deBlas C, Carro MD (2019) Variability in the chemical composition and in vitro ruminal fermentation of olive cake by-products. Animals (Basel) 9(3):109. https://doi.org/10.3390/ani9030109

    Article  Google Scholar 

  37. Han L, Feng J, Zhang S, Ma Z, Wang Y, Zhang X (2012) Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz J Microbiol 43(1):53–61. https://doi.org/10.1590/S1517-83822012000100006

    Article  Google Scholar 

  38. Moradi M, Afzalzadeh A, Behgar M, Norouzian MA (2015) Effects of electron beam, NaOH and urea on chemical composition, phenolic compounds, in situ ruminal degradability and in vitro gas production kinetics of pistachio byproducts. Vet Res Forum. 6:111–117

    Google Scholar 

  39. Eun JS, Beauchemin KA, Schulze H (2007) Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J Dairy Sci 90:1440–1451. https://doi.org/10.3168/jds.S0022-0302(07)71629-6

    Article  Google Scholar 

  40. Yang JC, Guevara-Oquendo VH, Refat B, Yu P (2022) Effects of exogenous fibrolytic enzyme derived from Trichoderma reesei on rumen degradation characteristics and degradability of low-tannin whole plant faba bean silage in dairy cows. Dairy 3:303–313. https://doi.org/10.3390/dairy3020023

    Article  Google Scholar 

  41. Souza JM, Souza JCSM, Sousa DO, Del Valle TA, Ghizzi LG, Alcântara AHD, Mesquita LG, Sousa RLM, Bueno ICS, Balieiro JCC (2021) The effects of compound treatment of Aspergillus oryzae and fibrolytic enzyme on in vitro degradation, gas production and fermentative profile of maize silage and sugarcane silage. J Agric Sci. 159(1-2):147–158. https://doi.org/10.1017/S002185962100037X

    Article  Google Scholar 

  42. Tirado-González DN, Miranda-Romero LA, Ruíz-Flores A, Medina-Cuéllar SE, Ramírez-Valverde R, Tirado-Estrada G (2018) Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. J App Anim Res. 46(1):771–783. https://doi.org/10.1080/09712119.2017.1399135

    Article  Google Scholar 

  43. Colombatto D, Morgavi D, Furtado A, Beauchemin K (2003) Screening of exogenous enzymes for ruminant diets: Relationship between biochemical characteristics and in vitro ruminal degradation. J Anim Sci 81(10): 2628–2638. https://doi.org/10.2527/2003.81102628x

    Article  Google Scholar 

  44. Vyver WFJ, Cruywagen CWC (2013) Exogenous fibrolytic enzymes to unlock nutrients: histological investigation of its effects on fibre degradation in ruminants. South Afr J Anim Sci 43:S54–S59. https://doi.org/10.4314/sajas.v43i5.10 

    Article  Google Scholar 

  45. Mao HL, Wu CH, Wang JK, Liu JX (2013) Synergistic effect of cellulose and xylanase on in vitro rumen fermentation and microbial population with rice straw as substrate. Anim Nutr Feed Tech 13:477–487

    Article  Google Scholar 

  46. Morgavi DP, Beauchemin KA, Nsereko VL, Rode LM, Iwaasa AD, Yang W, Mcallister TA, Wang Y (2000) Synergy between the ruminal fibrolytic enzymes and enzymes from T. longibrachiatum. J Dairy Sci 83:1310–1321

    Article  Google Scholar 

  47. Romero JJ, Macias EG, Ma ZX, Martins RM, Staples CR, Beauchemin KA, Adesogan AT (2016) Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. J Dairy Sci 99:3486–3496. https://doi.org/10.3168/jds.2015-10082

    Article  Google Scholar 

  48. Jabri J, Ammar H, Abid K, Beckers Y, Yaich H, Malek A, Rekhis J, Morsy AS, Soltan YA, Soufan W, Almadani MI, Chahine M, Marti ME, Okla MK, Kamoun M (2022) Effect of exogenous fibrolytic enzymes supplementation or functional feed additives on in vitro ruminal fermentation of chemically pre-treated sunflower Heads. Agriculture 12:696. https://doi.org/10.3390/agriculture12050696

    Article  Google Scholar 

  49. Achyuthan KE, Achyuthan AM, Adams PD, Dirk SM, Harper JC, Simmons BA, Singh AK (2010) Supramolecular self-assembled chaos: polyphenolic Lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15:8641–8688. https://doi.org/10.3390/molecules15118641

    Article  Google Scholar 

  50. Qin L, Li WC, Liu L, Zhu JQ, Li X, Li BZ, Yuan YJ (2016) Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnol Biofuels Bioprod 9:70. https://doi.org/10.1186/s13068-016-0485-2

    Google Scholar 

Download references

Funding

This research was supported by the Laboratory of Animal Nutrition: Management of the Health and Quality of Animal Production [LR14AGR03] (Ministry of Higher Education and Scientific Research, Tunisia).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JJ and MK. Format analyses and investigation: JJ, KA, and HY. Writing draft: JJ. Resource: AM, JR, and MK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jihene Jabri.

Ethics declarations

Ethical approval

The article does not contain any studies with human participants. It also does not perform experiments directly on animals. So, this experience does not need ethics statement.

Consent to participate

All the authors of this article are consented to participate.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabri, J., Abid, K., Yaich, H. et al. Enzymatic valorization of alkali-treated chickpea straw and sunflower stalks as high fibrous agricultural wastes for sustainable ruminant nutrition. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04659-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04659-y

Keywords

Navigation