Skip to main content
Log in

Applicable orientation of eco-friendly phyto-synthesized selenium nanoparticles: Bioactive investigation and dye photodegradation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The simple and eco-friendly approach to the selenium nanoparticles (SeNPs) synthesis process was carried out in this study by using Pseuderanthemum palatiferum leaves (P. palatiferum) extract, which possesses a large number of flavonoids, triterpenoids, and polyphenols, as both a reducing and stabilizing agent. Along with those, the characterization of SeNPs was analyzed through modern analytical methods, confirming the spherical shape with an average diameter of 247 nm and uniform distribution. The fundamental antibacterial performance toward strains of Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) was recorded as inhibition diameters of 14.67, 13.67, and 14.67 mm, respectively. Furthermore, the anticancer ability concerning liver cancer cells (Hep-G2), lung cancer cells (A549), and human embryonic kidney cells (HEK-293) of SeNPs was also given excellent with the inhibition ability up to 100% at a concentration of 256 μg/mL. Besides, SeNPs showed the photodegradation efficiency of organic dyes including methylene blue and crystal violet both up to 99%. Conclusively, the as-synthesized SeNPs, with the synergistic assistance of the P. palatiferum leaves extract, perform as a potential candidate in medicine and environmental remediation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC (2021) Advances in green synthesis of selenium nanoparticles and their application in food packaging. Int J Food Sci Technol 56:2640–2650

    Article  Google Scholar 

  2. Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, Balasubramanian B, Arumugam M (2021) Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-020-80327-9

    Article  Google Scholar 

  3. Amin BH, Ahmed HY, El Gazzar EM, Badawy MMM (2021) Enhancement the mycosynthesis of selenium nanoparticles by using gamma radiation. Dose-Response 19:15593258211059324

    Article  Google Scholar 

  4. Joshi SM, De Britto S, Jogaiah S (2021) Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes. J Biotechnol 325:196–206. https://doi.org/10.1016/j.jbiotec.2020.10.023

    Article  Google Scholar 

  5. Alagesan V, Venugopal S (2019) Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 9:105–116

    Article  Google Scholar 

  6. Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI (2021) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 32:351–361

    Article  Google Scholar 

  7. Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D (2020) Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. J Chem Rev 2:157–168

    Google Scholar 

  8. Verma P, Maheshwari SK (2018) Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. J Microsc Ultrastruct 6:182

    Google Scholar 

  9. Vahdati M, TohidiMoghadam T (2020) Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 10:1–10

    Article  Google Scholar 

  10. Blinov AV, Nagdalian AA, Siddiqui SA, Maglakelidze DG, Gvozdenko AA, Blinova AA, Yasnaya MA, Golik AB, Rebezov MB, Jafari SM (2022) Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. Sci Rep 12:1–16

    Article  Google Scholar 

  11. Al Jahdaly BA, Al-Radadi NS, Eldin GMG, Almahri A, Ahmed MK, Shoueir K, Janowska I (2021) Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J Mater Res Technol 11:85–97

    Article  Google Scholar 

  12. Jadhav AA, Khanna PK (2015) Impact of microwave irradiation on cyclo-octeno-1, 2, 3-selenadiazole: formation of selenium nanoparticles and their polymorphs. Rsc Adv 5:44756–44763

    Article  Google Scholar 

  13. Ye X, Chen L, Liu L, Bai Y (2017) Electrochemical synthesis of selenium nanoparticles and formation of sea urchin-like selenium nanoparticles by electrostatic assembly. Mater Lett 196:381–384

    Article  Google Scholar 

  14. Rahman AU, Wei Y, Ahmad A, Khan AU, Ali R, Ullah S, Ahmad W, Yuan Q (2020) Selenium nanorods decorated gold nanostructures: synthesis, characterization and biological applications. J Clust Sci 31:727–737. https://doi.org/10.1007/s10876-019-01680-y

    Article  Google Scholar 

  15. Pyrzynska K, Sentkowska A (2022) Biosynthesis of selenium nanoparticles using plant extracts. J Nanostructure Chem 12:467–480. https://doi.org/10.1007/s40097-021-00435-4

  16. Mellinas C, Jiménez A, Garrigós MDC (2019) Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 24:4048

    Article  Google Scholar 

  17. Kazemi M, Akbari A, Sabouri Z, Soleimanpour S, Zarrinfar H, Khatami M, Darroudi M (2021) Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess Biosyst Eng 44:1215–1225. https://doi.org/10.1007/s00449-021-02515-9

    Article  Google Scholar 

  18. Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M (2021) Phytotoxicological effects of engineered nanoparticles: an emerging nanotoxicology. Sci Total Environ 801:149809

    Article  Google Scholar 

  19. Geetha N, Bhavya G, Abhijith P, Shekhar R, Dayananda K, Jogaiah S (2021) Insights into nanomycoremediation: secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. J Hazard Mater 409:124541

    Article  Google Scholar 

  20. Nualkaew S, Padee P, Talubmook C (2015) Hypoglycemic activity in diabetic rats of stigmasterol and sitosterol-3-O--D-glucopyranoside isolated from Pseuderanthemum palatiferum (Nees) Radlk. leaf extract. J Med Plants Res 9:629–635

    Article  Google Scholar 

  21. Khonsung P, Panthong A, Chiranthanut N, Intahphuak S (2011) Hypotensive effect of the water extract of the leaves of Pseuderanthemum palatiferum. J Nat Med 65:551–558

    Article  Google Scholar 

  22. Ho TC, Chun B (2019) Extraction of bioactive compounds from Pseuderanthemum palatiferum (Nees) Radlk. using subcritical water and conventional solvents: a comparison study. J Food Sci 84:1201–1207

    Article  Google Scholar 

  23. Salem SS, Badawy MSEM, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH (2022) Green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 12. https://doi.org/10.3390/life12060893

  24. Aulakh MK, Pal B, Vaishnav A, Prakash NT (2021) Biosynthesized monodispersed spherical Se co-catalyst nanoparticles impregnated over ZnO for 4-chloroguaiacol degradation under solar irradiations. J Environ Chem Eng 9:104892

    Article  Google Scholar 

  25. Noohpisheh Z, Amiri H, Farhadi S, Mohammadi-Gholami A (2020) Green synthesis of Ag-ZnO nanocomposites using Trigonella foenum-graecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties, Spectrochim. Acta Part A Mol Biomol Spectrosc 240:118595

    Article  Google Scholar 

  26. Le Thao My P, Van Luc T, Do Dat T, HoaiThanh V, KhanhDuy H, ThanhPhong M, Minh Nam H, HuuHieu N (2020) Optimization of flavonoids extraction from Vietnamese male papaya (Carica papaya, L.) flowers by ultrasound-asissted method and testing bioactivities of the extract. ChemistrySelect 5:13407–13416

    Article  Google Scholar 

  27. Tabasum S, Khare S, Jain K (2016) Spectrophotometric quantification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. seeds. Asian J Pharm Clin Res 9:371–374

    Google Scholar 

  28. Do Dat T, Viet ND, My PLT, Linh NT, Thanh VH, Linh NTT, Ngan NTK, Linh NTT, Nam HM, Phong MT (2021) The application of ethanolic ultrasonication to ameliorate the triterpenoid content extracted from Vietnamese Ganoderma lucidum with the examination by gas chromatography. ChemistrySelect 6:2590–2606

    Article  Google Scholar 

  29. Odriozola-Serrano I, Hernández-Jover T, Martín-Belloso O (2007) Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem 105:1151–1158

    Article  Google Scholar 

  30. Prasertsung I, Aroonraj K, Kamwilaisak K, Saito N, Damrongsakkul S (2019) Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP). Carbohydr Polym 205:472–479

    Article  Google Scholar 

  31. Dat NM, Cong CQ, Hai ND, Nam NTH, Thinh DB, Duy HK, Danh TT, Loi PHHP, Phong MT, Hieu NH (2022) Green synthesis of chitosan-based membrane modified with uniformly micro-sizing selenium particles decorated graphene oxide for antibacterial application. Int J Biol Macromol 220:48–359. https://doi.org/10.1016/j.ijbiomac.2022.08.078

  32. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6:71–79

    Article  Google Scholar 

  33. Sowndarya P, Ramkumar G, Shivakumar MS (2017) Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells Nanomedicine Biotechnol 45:1490–1495

    Article  Google Scholar 

  34. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A (2016) A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif Cells Nanomedicine Biotechnol 44:471–477

    Article  Google Scholar 

  35. Dao MU, Le HS, Hoang HY, Tran VA, Doan VD, Le TTN, Sirotkin A (2021) Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties. Environ Res 198:110481. https://doi.org/10.1016/j.envres.2020.110481

    Article  Google Scholar 

  36. Hai ND, Dat NM, Thinh DB, Nam NTH, Dat NT, Phong MT, Hieu NH (2022) Phytosynthesis of silver nanoparticles using Mangifera indica leaves extract at room temperature: formation mechanism, catalytic reduction, colorimetric sensing, and antimicrobial activity. Colloids Surf B Biointerfaces 112974

  37. Zayadi RA, Abu Bakar F, Ahmad MK (2019) Elucidation of synergistic effect of eucalyptus globulus honey and Zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties. Sustain Chem Pharm 13:100156. https://doi.org/10.1016/j.scp.2019.100156

    Article  Google Scholar 

  38. Jain R, Seder-Colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch ED, Weiss S, Farges F, Lens PNL (2015) Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. J Hazard Mater 295:193–200. https://doi.org/10.1016/j.jhazmat.2015.03.043

    Article  Google Scholar 

  39. Hageman SPW, van der Weijden RD, Stams AJM, Buisman CJN (2017) Bio-production of selenium nanoparticles with diverse physical properties for recovery from water. Int J Miner Process 169:7–15. https://doi.org/10.1016/j.minpro.2017.09.018

    Article  Google Scholar 

  40. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327. https://doi.org/10.2147/IJN.S165125

    Article  Google Scholar 

  41. Gunti L, Dass RS, Mahata PK (2022) Multifaceted role of phyto-assisted selenium nanoparticles (SeNPs) in biomedical and human therapeutics, in, pp. 437–458. https://doi.org/10.1007/978-3-031-07063-1_20

  42. Ho TC, Kiddane AT, Khan F, Cho Y-J, Park J-S, Lee H-J, Kim G-D, Kim Y-M, Chun B-S (2022) Pressurized liquid extraction of phenolics from Pseuderanthemum palatiferum (Nees) Radlk. leaves: optimization, characterization, and biofunctional properties. J Ind Eng Chem 108:418–428. https://doi.org/10.1016/j.jiec.2022.01.018

    Article  Google Scholar 

  43. Yarley OPN, Kojo AB, Zhou C, Yu X, Gideon A, Kwadwo HH, Richard O (2021) Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. Int J Biol Macromol 183:2262–2271. https://doi.org/10.1016/j.ijbiomac.2021.05.181

    Article  Google Scholar 

  44. Tagousop CN, Tamokou JDD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18:1–10. https://doi.org/10.1186/s12906-018-2321-7

    Article  Google Scholar 

  45. Ahmad W, Shams S, Ahmad A, Wei Y, Yuan Q, Khan AU, Khan MS, Ur Rahman A, Iqbal M (2020) Synthesis of selenium–silver nanostructures with enhanced antibacterial, photocatalytic and antioxidant activities. Appl Nanosci 10:1191–1204. https://doi.org/10.1007/s13204-019-01213-z

    Article  Google Scholar 

  46. El-Zayat MM, Eraqi MM, Alrefai H, El-Khateeb AY, Ibrahim MA, Aljohani HM, Aljohani MM, Elshaer MM (2021) The antimicrobial, antioxidant, and anticancer activity of greenly synthesized selenium and zinc composite nanoparticles using ephedra aphylla extract. Biomolecules 11:1–17. https://doi.org/10.3390/biom11030470

    Article  Google Scholar 

  47. Mulla NA, Otari SV, Bohara RA, Yadav HM, Pawar SH (2020) Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Mater Lett 264:127353

    Article  Google Scholar 

  48. Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC (2021) Solvothermal synthesis of selenium nanoparticles with polygonal-like nanostructure and antibacterial potential. Mater Lett 304:130619. https://doi.org/10.1016/j.matlet.2021.130619

    Article  Google Scholar 

  49. Zhou J, Zhang D, Lv X, Liu X, Xu W, Chen L, Cai J, Din ZU, Cheng S (2022) Green synthesis of robust selenium nanoparticles via polysaccharide-polyphenol interaction: design principles and structure-bioactivity relationship. ACS Sustain Chem Eng 10:2052–2062. https://doi.org/10.1021/acssuschemeng.1c06048

    Article  Google Scholar 

  50. Li C, Salmen SH, Alahmadi TA, Veeraraghavan VP, Surapaneni KM, Natarajan N, Subramanian S (2022) Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats, Saudi. J Biol Sci 29:3354–3365

    Google Scholar 

  51. Wang R, Ha K, Dhandapani S, Kim Y-J (2022) Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnology 20:441. https://doi.org/10.1186/s12951-022-01576-6

    Article  Google Scholar 

  52. Mehanna ET, Khalaf SS, Mesbah NM, Abo-Elmatty DM, Hafez MM (2022) Anti-oxidant, anti-apoptotic, and mitochondrial regulatory effects of selenium nanoparticles against vancomycin induced nephrotoxicity in experimental rats. Life Sci 288:120098. https://doi.org/10.1016/j.lfs.2021.120098

    Article  Google Scholar 

  53. Liao W, Yu Z, Lin Z, Lei Z, Ning Z, Regenstein JM, Yang J, Ren J (2016) Biofunctionalization of selenium nanoparticle with Dictyophora indusiata polysaccharide and its antiproliferative activity through death-receptor and mitochondria-mediated apoptotic pathways. Sci Rep 5:18629. https://doi.org/10.1038/srep18629

    Article  Google Scholar 

  54. Malakootian M, Nasiri A, AmiriGharaghani M (2020) Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem Eng Commun 207:56–72

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Funding

This research is funded by Ho Chi Minh City Universityof Technology (HCMUT), VNUHCM

Author information

Authors and Affiliations

Authors

Contributions

Experimental, data curation and formal analysis: Quach Thi Thanh Huong, Ton That Buu, Tran Nhat Khanh, Tran Le Hoai Nhi, Bui Thanh Duy. Writing—original draft and editing: Nguyen Thanh Hoai Nam, Ninh Thi Tinh, Nguyen Duy Hai. Writing—review and editing: Nguyen Ngoc Kim Tuyen, Ly Tan Nhiem. Conceptualization and methodology, supervision: Mai Thanh Phong, Nguyen Huu Hieu

Corresponding authors

Correspondence to Mai Thanh Phong or Nguyen Huu Hieu.

Ethics declarations

Ethical approval

We assure that all of the experiments in this study follow the code of conduct; no experiment was conducted on living animal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 472 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuyen, N.N.K., Huong, Q.T.T., Nam, N.T.H. et al. Applicable orientation of eco-friendly phyto-synthesized selenium nanoparticles: Bioactive investigation and dye photodegradation. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03823-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03823-8

Keywords

Navigation