Skip to main content

Advertisement

Log in

Prediction on microwave-assisted elimination of biomass tar using back propagation neural network

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Microwave-assisted cracking is an emerging technique for biomass tar elimination, but lacks the artificial intelligence application for predicting the elimination efficiency and the optimal multi-correlated reaction conditions. In this work, we investigated the microwave-assisted cracking of a biomass tar model compound at various operating conditions and established a back propagation (BP) neural network based on the realistic experimental data to predict the highest elimination performance and obtain the corresponding optimal operation parameters. Results show that the xylene elimination efficiency increases monotonically with reaction temperature (Tr) at 600–850 °C and inlet xylene concentration (Cx) of 38.4 to 42.2 g/m3. It is also affected by gas hourly space velocity (GHSV) but rarely influenced by the SiC particle diameter (d). The xylene was mainly cracked into methane and toluene, and the cracking reactions involve both direct decomposition and radical-induced cracking. Based on a three-layer BP model, the highest xylene elimination efficiency was predicted to be 95.7%, and the main optimal parameters including Tr, GHSV, Cx, and d are 800 °C, 27.3 h−1, 38.4 g/m3, and 1 mm, respectively. The predicted result shows a good accuracy after experimental validation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li C, Suzuki K (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew Sustain Energy Rev 13:594–604. https://doi.org/10.1016/j.rser.2008.01.009

    Article  CAS  Google Scholar 

  2. Gredinger A, Spörl R, Scheffknecht G (2018) Comparison measurements of tar content in gasification systems between an online method and the tar protocol. Biomass Bioenergy 111:301–307. https://doi.org/10.1016/j.biombioe.2017.01.026

    Article  CAS  Google Scholar 

  3. Torres W, Pansare SS, Goodwin JG (2007) Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 49:407–456. https://doi.org/10.1080/01614940701375134

    Article  CAS  Google Scholar 

  4. Valderrama Rios ML, González AM, Lora EES, Almazán del Olmo OA (2018) Reduction of tar generated during biomass gasification: a review. Biomass Bioenergy 108:345–370. https://doi.org/10.1016/j.biombioe.2017.12.002

    Article  CAS  Google Scholar 

  5. Anis S, Zainal ZA (2011) Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew Sustain Energy Rev 15:2355–2377. https://doi.org/10.1016/j.rser.2011.02.018

    Article  CAS  Google Scholar 

  6. Zhang X, Chen Z, Cheng L, Xu L, Bi X, Liu Q (2022) Valorization of fluid petroleum coke for efficient catalytic destruction of biomass gasification tar. J Hazard Mater 424:127297. https://doi.org/10.1016/j.jhazmat.2021.127297

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Liu P, Chen W, Wu Y, Lei T, Huang S, Li Y, Wu S, Wang Z (2022) Catalytic pyrolysis of toluene as biomass tar model component using Ni/HZSM-5 modified by CeO2 and MgO promoters. J Anal Appl Pyrolysis 162:105436. https://doi.org/10.1016/j.jaap.2022.105436

    Article  CAS  Google Scholar 

  8. Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95. https://doi.org/10.1016/j.pecs.2014.06.002

    Article  Google Scholar 

  9. Janajreh I, Raza SS, Valmundsson AS (2013) Plasma gasification process: modeling, simulation and comparison with conventional air gasification. Energy Convers Manag 65:801–809. https://doi.org/10.1016/j.enconman.2012.03.010

    Article  CAS  Google Scholar 

  10. Li J, Tao J, Yan B, Jiao L, Chen G, Hu J (2021) Review of microwave-based treatments of biomass gasification tar. Renew Sustain Energy Rev 150:111510. https://doi.org/10.1016/j.rser.2021.111510

    Article  CAS  Google Scholar 

  11. Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev 28:317–330. https://doi.org/10.1016/j.rser.2013.08.008

    Article  CAS  Google Scholar 

  12. Beneroso D, Bermúdez JM, Montes-Morán MA, Arenillas A, Menéndez JA (2016) Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production. Bioresour Technol 218:687–691. https://doi.org/10.1016/j.biortech.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  13. Yin C (2012) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour Technol 120:273–284. https://doi.org/10.1016/j.biortech.2012.06.016

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284. https://doi.org/10.1002/anie.200400655

    Article  CAS  Google Scholar 

  15. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374. https://doi.org/10.1039/B9NR00377K

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Muley PD, Henkel CE, Aguilar G, Klasson KT, Boldor D (2016) Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor. Appl Energy 183:995–1004. https://doi.org/10.1016/j.apenergy.2016.09.047

    Article  ADS  CAS  Google Scholar 

  17. Guo F, Dong Y, Tian B, Du S, Liang S, Zhou N, Wang Y, Chen P, Ruan R (2020) Applications of microwave energy in gas production and tar removal during biomass gasification. Sustainable Energy Fuels 4:5927–5946. https://doi.org/10.1039/D0SE01024C

    Article  CAS  Google Scholar 

  18. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2015) Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. J Anal Appl Pyrolysis 111:55–63. https://doi.org/10.1016/j.jaap.2014.12.011

    Article  CAS  Google Scholar 

  19. Zhang Y, Chen P, Liu S, Peng P, Min M, Cheng Y, Anderson E, Zhou N, Fan L, Liu C, Chen G, Liu Y, Lei H, Li B, Ruan R (2017) Effects of feedstock characteristics on microwave-assisted pyrolysis - a review. Bioresour Technol 230:143–151. https://doi.org/10.1016/j.biortech.2017.01.046

    Article  CAS  PubMed  Google Scholar 

  20. Ethaib S, Omar R, Kamal SMM, Awang Biak DR, Zubaidi SL (2020) Microwave-assisted pyrolysis of biomass waste: a mini review. Processes 8:1190. https://doi.org/10.3390/pr8091190

    Article  CAS  Google Scholar 

  21. Li J, Jiao L, Tao J, Chen G, Hu J, Yan B, Mansour M, Guo Y, Ye P, Ding Z, Yu T (2020) Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis. Appl Energy 272:115194. https://doi.org/10.1016/j.apenergy.2020.115194

    Article  CAS  Google Scholar 

  22. Li J, Tao J, Yan B, Cheng K, Chen G, Hu J (2020) Microwave reforming with char-supported nickel-cerium catalysts: a potential approach for thorough conversion of biomass tar model compound. Appl Energy 261:114375. https://doi.org/10.1016/j.apenergy.2019.114375

    Article  CAS  Google Scholar 

  23. Zhang Y, Song Z, Yan Y, Zhao X, Sun J, Mao Y, Wang W (2018) Performance of Fe/SiC catalysts for cracking of toluene under microwave irradiation. Int J Hydrogen Energy 43:7227–7236. https://doi.org/10.1016/j.ijhydene.2018.02.158

    Article  CAS  Google Scholar 

  24. Chen G, Li J, Cheng Z, Yan B, Ma W, Yao J (2018) Investigation on model compound of biomass gasification tar cracking in microwave furnace: comparative research. Appl Energy 217:249–257. https://doi.org/10.1016/j.apenergy.2018.02.028

    Article  ADS  CAS  Google Scholar 

  25. Pallavkar S, Kim TH, Lin J, Hopper J, Ho T, Jo HJ, Lee JH (2010) Microwave-assisted noncatalytic destruction of volatile organic compounds using ceramic-based microwave absorbing media. Ind Eng Chem Res 49:8461–8469. https://doi.org/10.1021/ie1009734

    Article  CAS  Google Scholar 

  26. Ding S, Li H, Su C, Yu J, Jin F (2013) Evolutionary artificial neural networks: a review. Artif Intell Rev 39:251–260. https://doi.org/10.1007/s10462-011-9270-6

    Article  Google Scholar 

  27. Rosli MN, Aziz N (2016) Review of neural network modelling of cracking process. 2016 IOP Conf Ser: Mater Sci Eng 162:01. https://doi.org/10.1088/1757-899X/162/1/012016

    Article  Google Scholar 

  28. Li J, Yao X, Xu K (2021) A comprehensive model integrating BP neural network and RSM for the prediction and optimization of syngas quality. Biomass Bioenergy 155:106278. https://doi.org/10.1016/j.biombioe.2021.106278

    Article  CAS  Google Scholar 

  29. Liang W, Wang G, Ning X, Zhang J, Li Y, Jiang C, Zhang N (2020) Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel 260:116324. https://doi.org/10.1016/j.fuel.2019.116324

    Article  CAS  Google Scholar 

  30. Wu D, Zhang D, Liu S, Jin Z, Chowwanonthapunya T, Gao J, Li X (2020) Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors. Chem Eng J 399:125878. https://doi.org/10.1016/j.cej.2020.125878

    Article  CAS  Google Scholar 

  31. Long J, Li T, Yang M, Hu G, Zhong (2019) Hybrid strategy integrating variable selection and a neural network for fluid catalytic cracking modeling. Ind Eng Chem Res 58:247-258.https://doi.org/10.1021/acs.iecr.8b04821

  32. Sedighi M, Keyvanloo K, Towfighi J (2011) Modeling of thermal cracking of heavy liquid hydrocarbon: application of kinetic modeling, artificial neural network, and neuro-fuzzy models. Ind Eng Chem Res 50:1536–1547. https://doi.org/10.1021/ie1015552

    Article  CAS  Google Scholar 

  33. Nabavi R, Niaei A, Salari D, Towfighi J (2007) Modeling of thermal cracking of LPG: application of artificial neural network in prediction of the main product yields. J Anal Appl Pyrolysis 80:175–181. https://doi.org/10.1016/j.jaap.2007.01.015

    Article  CAS  Google Scholar 

  34. Sun Y, Liu L, Wang Q, Yang X, Tu X (2016) Pyrolysis products from industrial waste biomass based on a neural network model. J Anal Appl Pyrolysis 120:94–102. https://doi.org/10.1016/j.jaap.2016.04.013

    Article  CAS  Google Scholar 

  35. Ethaib S, Omar R, Mazlina MKS, Radiah ABD, Syafiie S (2018) Development of a hybrid PSO–ANN model for estimating glucose and xylose yields for microwave-assisted pretreatment and the enzymatic hydrolysis of lignocellulosic biomass. Neural Comput Appl 30:1111–1121. https://doi.org/10.1007/s00521-016-2755-0

    Article  Google Scholar 

  36. Kostyniuk A, Grilc M, Likozar B (2019) Catalytic cracking of biomass-derived hydrocarbon tars or model compounds to form biobased benzene, toluene, and xylene isomer mixtures. Ind Eng Chem Res 58:7690–7705. https://doi.org/10.1021/acs.iecr.9b01219

    Article  CAS  Google Scholar 

  37. Szwarc M (1948) The C-H bond energy in toluene and xylenes. J Chem Phy 16:128–136. https://doi.org/10.1063/1.1746794

    Article  ADS  CAS  Google Scholar 

  38. Simell PA, Hepola JO, Krause AOI (1997) Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76:1117–1127. https://doi.org/10.1016/S0016-2361(97)00109-9

    Article  CAS  Google Scholar 

  39. Anis S, Zainal ZA, Bakar MZA (2013) Thermocatalytic treatment of biomass tar model compounds via radio frequency. Bioresour Technol 136:117–125. https://doi.org/10.1016/j.biortech.2013.02.049

    Article  CAS  PubMed  Google Scholar 

  40. Safarik I, Strausz OP (1997) The thermal decomposition of hydrocarbons. Part 2 Alkylaromatic Hydrocarbons: alkylbenzenes. Res Chem Intermed 23:63–99. https://doi.org/10.1163/156856797X00402

    Article  CAS  Google Scholar 

  41. Chen Z, Zhang X, Liu Z, Liu Q, Xu T (2018) Quantification of reactive intermediate radicals and their induction effect during pyrolysis of two n-alkylbenzenes. Fuel Process Technol 178:126–132. https://doi.org/10.1016/j.fuproc.2018.05.025

    Article  CAS  Google Scholar 

  42. Schaefgen JR (1955) The pyrolysis of p-xylene. J Polymer Sci 15:203–219. https://doi.org/10.1002/pol.1955.120157917

    Article  ADS  CAS  Google Scholar 

  43. Feng Y, Liu Y, Wang X, He Z, Hung T, Wang Q, Xi H (2020) Performance prediction and optimization of an organic rankine cycle (ORC) for waste heat recovery using back propagation neural network. Energy Convers Manag 226:113552. https://doi.org/10.1016/j.enconman.2020.113552

    Article  CAS  Google Scholar 

Download references

Funding

This work was mainly funded by the Huzhou Science and Technology Project (No. 2020GZ28) and partly funded by the Zhejiang Basic Public Welfare Research Project (No. LGF22E080025).

Author information

Authors and Affiliations

Authors

Contributions

Yu Chen: methodology; investigation; BP model establishment; writing—original draft. Cheng Yang: experimental data collection; formal analysis. Kanfeng Ying: visualization; material preparation. Fan Yang: data curation. Lei Che: validation, resources. Zezhou Chen: conceptualization; writing—review and editing; supervision; project administration. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zezhou Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 619 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, C., Ying, K. et al. Prediction on microwave-assisted elimination of biomass tar using back propagation neural network. Biomass Conv. Bioref. 14, 7927–7937 (2024). https://doi.org/10.1007/s13399-022-02834-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02834-1

Keywords

Navigation