Skip to main content
Log in

Decay of solutions to a water wave model with a nonlocal viscous term

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We update here the results on the decay of solutions to a nonlocal water wave equation that reads

$$\begin{aligned} u _t+u_x+\dfrac{1}{\sqrt{\pi }}\frac{\partial }{\partial t} \int _0^t\dfrac{u(s)}{\sqrt{t-s}} ds+ u u_x= u_{xx}, \end{aligned}$$

where \(\displaystyle \dfrac{1}{\sqrt{\pi }}\dfrac{\partial }{\partial t} \int _0^t\dfrac{u(s)}{\sqrt{t-s}} ds \) is the Riemann–Liouville half-order derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Audounet, J., Giovangigli, V., Roquejoffre, J.: A threshold phenomenon in the propagation of a point-source initiated flame. Phys. D 121, 295–316 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bona, J., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H.: Analyse Fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  4. Chen, M.: Exact travelling-wave solutions to bidirectional wave equations. Int. J. Theor. Phys. 37(5), 1547–1567 (1998)

    Article  Google Scholar 

  5. Chen, M., Dumont, S., Dupaigne, L., Goubet, O.: Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete Contin. Dyn. Syst. 27(4), 1473–1492 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dumont, S., Manoubi, : Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach. Math. Methods Appl. Sci. 41, 4810–4826 (2018)

    Article  MathSciNet  Google Scholar 

  7. Dutykh, D.: Viscous-potential free-surface flows and long wave modelling. Eur. J. Mech. B. Fluids 28, 430–443 (2009)

    Article  MathSciNet  Google Scholar 

  8. Dutykh, D., Dias, F.: Viscous potential free surface flows in a fluid layer of finite depth. C.R.A.S, Série I 347, 113–118 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Galucio, A.C., Deü, J.-F., Dubois, F.: The \(G^\alpha \)-scheme for approximation of fractional derivatives: application to the dynamics of dissipative systems. J. Vib. Control 14, 1597–1605 (2008)

    Article  MathSciNet  Google Scholar 

  10. Galucio, A.C., Deü, J.-F., Mengué, S., Dubois, F.: An adaptation of the Gear scheme for fractional derivatives. Comput. Methods Appl. Mech. Engrg. 195, 6073–6085 (2006)

    Article  MathSciNet  Google Scholar 

  11. Goubet, O., Manoubi, I.: Theoretical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach Advances in Nonlinear Analysis, ISSN (Online) 2191-950X, ISSN (Print) 2191–9496. https://doi.org/10.1515/anona-2016-0274

  12. Haddar, H., Matignon, D.: Well-posedness of non-linear conservative systems when coupled with diffusive systems, Symposium on Nonlinear Control Systems (NOLCOS). Stuttgart, Germany 1, 251–256 (2004)

    Google Scholar 

  13. Helie, T., Matignon, D.: Diffusive reprentations for the analysis and simulation of flared acoustic pipes with visco-thermal losse. Math. Models Methods Appl. Sci. 16, 503–536 (2006)

    Article  MathSciNet  Google Scholar 

  14. Holden, H., Karlsen, K., Risebro, N., Tao, T.: Operator splitting for the KDV equation. Math. Comput. 80, 821–846 (2011)

    Article  MathSciNet  Google Scholar 

  15. Hristov, J.: Fractional derivative with non-singular kernels, from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models, Chapter 10. In: Bhalekar S (Ed.) Frontiers in Fractional Calculus. Bentham, Publ. (2017) (in Press)

  16. Kakutani, T., Matsuuchi, M.: Effect of viscosity of long gravity waves. J. Phys. Soc. Japan 39, 237–246 (1975)

    Article  MathSciNet  Google Scholar 

  17. Koh, C., Kelly, J.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn. 19, 229–241 (1990)

    Article  Google Scholar 

  18. LeVeque, R.: Numerical methods for conservation laws, 2nd edn. Birkhäuser-Verlag, Basel (1992)

    Book  Google Scholar 

  19. Lieb, E., Loss, M.: Analysis, second edition, Graduates studies in Mathematics 14. Am. Math. Soc, Providence (2001)

  20. Liu, P., Orfila, A.: Viscous effects on transient long wave propagation. J. Fluid Mech. 520, 83–92 (2004)

    Article  MathSciNet  Google Scholar 

  21. Lombard, B., Mercier, J.-F.: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz. J. Comput. Phys. 259, 421–443 (2014)

    Article  MathSciNet  Google Scholar 

  22. Manoubi, I.: Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete Contin. Dyn. Syst. 19, 2837–2863 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Matignon, D., Prieur, C.: Asymptotic stability of linear conservative systems when coupled with diffusive systems, ESAIM: Control. Optim. Calc. Var. 11, 487–507 (2005)

    Article  MathSciNet  Google Scholar 

  24. Montseny, G.: Diffusion monodimensionnelle et intégration d’ordre \(1/2\), Internal LAAS Report N. 91232 (1991)

  25. Montseny, G.: Représentation Diffusive. Hermes Science Publ, New Castle (2005)

    MATH  Google Scholar 

  26. Montseny, G., Audounet, J., Matignon, D.: Diffusive representation for pseudodifferentially damped nonlinear systems. Nonlinear Control Year 2000 2, 163–182 (2000)

    MATH  Google Scholar 

  27. Willem, M.: Analyse Harmonique Réelle. Hermann, Paris (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

These result were presented at the PACOM 2017 conference. The authors would like to thank the anonymous referees for their remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Goubet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumont, S., Goubet, O. & Manoubi, I. Decay of solutions to a water wave model with a nonlocal viscous term. Afr. Mat. 31, 115–127 (2020). https://doi.org/10.1007/s13370-019-00748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00748-2

Keywords

Mathematics Subject Classification

Navigation