Skip to main content
Log in

DR-XAI: Explainable Deep Learning Model for Accurate Diabetic Retinopathy Severity Assessment

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To avoid irreversible vision loss, early detection and diagnosis of Diabetic Retinopathy (DR) severity is critical. The percentage of people undertaking eye examinations has risen in recent years, increasing the burden on Ophthalmologists. Various Artificial Intelligence (AI) screening systems have recently been deployed to improve the accuracy of DR diagnosis. However, owing to their black-box nature, most successful AI screening systems are still held back in reality for medical decision aid. The need for an Explainable Artificial Intelligence (XAI) screening system to help Ophthalmologists in DR diagnosis is inevitable. The proposed work is divided into three phases: (i) pre-processing, (ii) optic disk localization, and (iii) DR severity classification. On top of the deep learning model, the proposed work implements a Local Interpretable Model-agnostic Explanations (LIME) explainer to describe what features of the retinal image took part in justifying the predictions. The proposed framework outputs a pixel-value tensor, explaining the possible pixel values contributing to the model’s prediction. MESSIDOR data collection is used for experimental analysis. When compared with other deep learning models, the proposed framework achieved a better accuracy of 98.04%, sensitivity of 99.69%, specificity of 96.37%, f1-score of 96.99% and error rate of 3.60%. Incorporating explainable deep learning models for diabetic retinopathy severity grading improves diagnostic accuracy and provides clinicians with clear insights, enabling trust and informed decision-making in DR diagnosis. This proposed technique enormously advances more effective and responsible healthcare procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E.: IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017). https://doi.org/10.1016/J.DIABRES.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  2. Lambert, M.; Javitt, J.C.; Aiello, L.P.: Cost-effectiveness of detecting and treating diabetic retinopathy [4] (multiple letters). Ann. Intern. Med. 125, 939 (1996). https://doi.org/10.7326/0003-4819-125-11-199612010-00019

    Article  CAS  PubMed  Google Scholar 

  3. Mukherjee, N.; Sengupta, S.: Comparing deep feature extraction strategies for diabetic retinopathy stage classification from fundus images. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-022-07547-1

    Article  Google Scholar 

  4. Ting, D.S.W.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R.; Abramoff, M.; Wong, T.Y.: Deep learning in ophthalmology: the technical and clinical considerations. Progress Retin. Eye Res. 72, 100759 (2019)

    Article  Google Scholar 

  5. Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L.: Explaining explanations: an overview of Interpretability of machine learning. In: Proceedings: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018. pp. 80–89. Institute of Electrical and Electronics Engineers Inc. (2019)

  6. Dai, L.; Wu, L.; Li, H.; Cai, C.; Wu, Q.; Kong, H.; Liu, R.; Wang, X.; Hou, X.; Liu, Y.; Long, X.; Wen, Y.; Lu, L.; Shen, Y.; Chen, Y.; Shen, D.; Yang, X.; Zou, H.; Sheng, B.; Jia, W.: A deep learning system for detecting diabetic Retinopathy across the disease spectrum. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-23458-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Russell, S.; Dewey, D.; Tegmark, M.: Research priorities for robust and beneficial artificial intelligence. AI Mag. 36, 105–114 (2015). https://doi.org/10.1609/AIMAG.V36I4.2577

    Article  Google Scholar 

  8. Goodman, B.; Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation.” AI Mag. 38, 50–57 (2017). https://doi.org/10.1609/AIMAG.V38I3.2741

    Article  Google Scholar 

  9. Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.: Explainability for artificial intelligence in healthcare: a multidiskiplinary perspective. BMC Med. Inform. Decis. Mak. 20, 1–9 (2020). https://doi.org/10.1186/S12911-020-01332-6/PEER-REVIEW

    Article  Google Scholar 

  10. Nage, P.; Shitole, S.: A survey on automatic diabetic retinopathy screening. SN Comput. Sci. (2021). https://doi.org/10.1007/s42979-021-00833-z

    Article  Google Scholar 

  11. Zeiler, M.D.; Fergus, R.: Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8689 LNCS, pp. 818–833 (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  12. Simonyan, K.; Vedaldi, A.; Zisserman, A.: Deep inside convolutional networks: visualizing image classification models and saliency maps. In: 2nd International Conference on Learning Representations, ICLR 2014—Workshop Track Proceedings. pp. 1–8 (2014)

  13. Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.R.; Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140

    Article  CAS  Google Scholar 

  14. Quellec, G.; Charrière, K.; Boudi, Y.; Cochener, B.; Lamard, M.: Deep image mining for diabetic retinopathy screening. Med. Image Anal. 39, 178–193 (2017). https://doi.org/10.1016/j.media.2017.04.012

    Article  PubMed  Google Scholar 

  15. Zhou, Y.; Zhu, Y.; Ye, Q.; Qiu, Q.; Jiao, J.: Weakly supervised instance segmentation using class peak response. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3791–3800 (2018). https://doi.org/10.1109/CVPR.2018.00399

  16. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D.: Grad-cam: Why did you say that? Visual explanations from deep networks via gradient-based localization. Revista do Hospital das Clinicas 17, 331–336 (2016)

    Google Scholar 

  17. Kontschieder, P.; Fiterau, M.; Criminisi, A.; Bulò, S.R.: Deep neural decision forests. In: IJCAI International Joint Conference on Artificial Intelligence. 2016-Janua, pp. 4190–4194 (2016)

  18. Hehn, T.M.; Kooij, J.F.P.; Hamprecht, F.A.: End-to-End learning of decision trees and forests. Int. J. Comput. Vis. 128, 997–1011 (2020). https://doi.org/10.1007/s11263-019-01237-6

    Article  MathSciNet  Google Scholar 

  19. Hemanth, D.J.; Deperlioglu, O.; Kose, U.: An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput. Appl. 32, 707–721 (2020). https://doi.org/10.1007/s00521-018-03974-0

    Article  Google Scholar 

  20. Nguyen, Q.H.; Muthuraman, R.; Singh, L.; Sen, G.; Tran, A.C.; Nguyen, B.P.; Chua, M.: Diabetic retinopathy detection using deep learning. In: ACM International Conference Proceeding Series. pp. 103–107. Association for Computing Machinery (2020)

  21. Jadhav, A.S.; Patil, P.B.; Biradar, S.: Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evol. Intell. 14, 1431–1448 (2021). https://doi.org/10.1007/s12065-020-00400-0

    Article  Google Scholar 

  22. Qummar, S.; Khan, F.G.; Shah, S.; Khan, A.; Shamshirband, S.; Rehman, Z.U.; Khan, I.A.; Jadoon, W.: A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7, 150530–150539 (2019). https://doi.org/10.1109/ACCESS.2019.2947484

    Article  Google Scholar 

  23. Frosst, N.; Hinton, G. rey: Distilling a neural network into a soft decision tree. CEUR Workshop Proc. 2071, (2018)

  24. Li, Y.H.; Yeh, N.N.; Chen, S.J.; Chung, Y.C.: Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mob. Inf. Syst. (2019). https://doi.org/10.1155/2019/6142839

    Article  Google Scholar 

  25. Kader, N.I.A.; Yusof, U.K.; Naim, S.: Diabetic retinopathy classification using support vector machine with hyperparameter optimization. Int. J. Adv. Soft Comput. Appl. 11, 76–93 (2019)

    Google Scholar 

  26. Gadekallu, T.R.; Khare, N.; Bhattacharya, S.; Singh, S.; Maddikunta, P.K.R.; Srivastava, G.: Deep neural networks to predict diabetic retinopathy. J. Ambient. Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01963-7

    Article  Google Scholar 

  27. Lahmar, C.; Idri, A.: On the value of deep learning for diagnosing diabetic retinopathy. Health Technol. (Berl). 12, 89–105 (2022). https://doi.org/10.1007/s12553-021-00606-x

    Article  Google Scholar 

  28. Elwin, J.G.R.; Mandala, J.; Maram, B.; Kumar, R.R.: Ar-HGSO: autoregressive-henry gas sailfish optimization enabled deep learning model for diabetic retinopathy detection and severity level classification. Biomed. Sign. Process Control. (2022). https://doi.org/10.1016/j.bspc.2022.103712

    Article  Google Scholar 

  29. Farooq, M.S.; Arooj, A.; Alroobaea, R.; Baqasah, A.M.; Jabarulla, M.Y.; Singh, D.; Sardar, R.: Untangling computer-aided diagnostic system for screening diabetic retinopathy based on deep learning techniques. Sensors (2022). https://doi.org/10.3390/s22051803

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X.; Li, F.; Li, D.; Wei, Q.; Han, X.; Zhang, B.; Chen, H.; Zhang, Y.; Mo, B.; Hu, B.; Ding, D.; Li, X.; Yu, W.; Chen, Y.: Automated detection of severe diabetic retinopathy using deep learning method. Graefe’s Arch. Clin. Exp. Ophthalmol. 260, 849–856 (2022)

    Article  Google Scholar 

  31. Mustafa, H.; Ali, S.F.; Bilal, M.; Hanif, M.S.: Multi-stream deep neural network for diabetic retinopathy severity classification under a boosting framework. IEEE Access 10, 113172–113183 (2022). https://doi.org/10.1109/access.2022.3217216

    Article  Google Scholar 

  32. AbdelMaksoud, E.; Barakat, S.; Elmogy, M.: A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med. Biol. Eng. Comput. 60, 2015–2038 (2022). https://doi.org/10.1007/s11517-022-02564-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bacanin, N.; Stoean, R.; Zivkovic, M.; Petrovic, A.; Rashid, T.A.; Bezdan, T.: Performance of a novel chaotic firefly algorithm with enhanced exploration for tackling global optimization problems: application for dropout regularization. Mathematics (2021). https://doi.org/10.3390/math9212705

    Article  Google Scholar 

  34. Malakar, S.; Ghosh, M.; Bhowmik, S.; Sarkar, R.; Nasipuri, M.: A GA based hierarchical feature selection approach for handwritten word recognition. Neural Comput. Appl. 32, 2533–2552 (2020). https://doi.org/10.1007/s00521-018-3937-8

    Article  Google Scholar 

  35. ETDRS: Grading DR from Stereoscopic Color fundus Photographs: an extension of the Modified Airlie Housa Classification: ETDRS 10. Ophthalmology. (1991)

  36. Vasireddi, H.K.; K, S.D.; Raja Reddy, G.N.V.: Deep feed forward neural network–based screening system for diabetic retinopathy severity classification using the lion optimization algorithm. Graefe’s Arch. Clin. Exp. Ophthalmol. (2021). https://doi.org/10.1007/s00417-021-05375-x

    Article  Google Scholar 

  37. Yazdani, M.; Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3, 24–36 (2016). https://doi.org/10.1016/j.jcde.2015.06.003

    Article  Google Scholar 

  38. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.: Feature Pyramid Networks for Object Detection, (2017)

  39. Derrac, J.; García, S.; Molina, D.; Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

Download references

Funding

No funding is received for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hemanth Kumar Vasireddi or K. Suganya Devi.

Ethics declarations

Conflict of interest

The authors state that they do not have any conflicts of interest.

Ethical Approval

This article contains no studies with human or animal subjects conducted by authors.

Informed Consent

All authors have approved the work and agreed with the journal Arabian Journal for Science and Engineering.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasireddi, H.K., Devi, K.S. & Reddy, G.N.V.R. DR-XAI: Explainable Deep Learning Model for Accurate Diabetic Retinopathy Severity Assessment. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08836-7

Keywords

Navigation