Skip to main content
Log in

An Magnetohydrodynamics Effect of Non-Newtonian Fluid Flows Over a Stretching/Shrinking Surface with CNT

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, carbon nanotubes, which serve as nanoparticles, are added to the basic fluid. By using a similarity transformation, the governing equations are converted into a set of ordinary differential equations (ODEs), which are then solved analytically. In order to simulate the flow and heat transfer behavior of carbon nanotubes, the Prandtl numbers for water and kerosene are 6.72 and 21, respectively. The precision of the analytical solution found in this study for the nonlinear flow of fluid containing carbon nanotubes is what makes it so beautiful. With the available experimental data, the proposed model is reliable. The main physical parameters for the Jeffrey fluid flow on the stretching/shrinking surface using carbon nanotubes are shown in tables and graphs and described in detail for the thermal and boundary layers. Carbon nanotubes enhance the heat more than the nanofluid; for this purpose, the work on carbon nanotubes flow through stretching/shrinking surfaces has many applications in biomedical, solar energy, generator cooling, nuclear system cooling, etc. Therefore, it is quite significant to assimilate the analytical extension of heat transfer fluid in the presence of magnetohydrodynamics under the influence of slip velocity. Further, carbon nanotubes can effectively elucidate the base materials’ thermal performance and mechanical properties. Here, we assimilated the extension of heat transfer fluid in the incidence of magnetohydrodynamics under the influence of slip velocity analytically. Further, carbon nanotubes can successfully elucidate the base materials’ thermal performance and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(B_{0}\) \(\left( {{\text{A}}/{\text{m}}} \right)\) :

Magnetic field

\(c,b\) :

Constants

\(C_{{\text{p}}}\) \(\left( {{\text{m}}^{2} \;{\text{s}}^{ - 2} \;{\text{K}}^{ - 1} } \right)\) :

Specific heat

\(d\) :

Stretching/shrinking coefficient

\(C_{{\text{f}}}\) :

Skin friction

\(k\) \(\left( {{\text{kg}}\;{\text{ms}}^{ - 3} K^{ - 1} } \right)\) :

Thermal conductivity

\(k^{*}\) \(\left( {{\text{m}}^{ - 1} } \right)\) :

Absorption coefficient

\(L_{1} ,\,L_{2}\) :

Slip parameter

\(Nu\) :

Nusselt number

\(\Pr\) :

Prandtl number

\(Q\) :

Chandrasekhar number

\(q_{{\text{r}}}\) \(\left( {{\text{W}}\;{\text{m}}^{ - 2} } \right)\) :

Radiation heat flux

\(Rd\) :

Radiation parameter

\(T\) \(\left( {\text{K}} \right)\) :

Temperature

\(T_{{\text{w}}}\) \(\left( {\text{K}} \right)\) :

Wall temperature

\(T_{\infty }\) \(\left( {\text{K}} \right)\) :

Ambient temperature

\(V_{{\text{c}}}\) :

Mass transpiration

\(u,v\) \(\left( {{\text{ms}}^{ - 1} } \right)\) :

Velocity complements

\(x,y\) \(\left( {\text{m}} \right)\) :

Coordinate axis

\(\alpha\) \(\left( {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right)\) :

Thermal diffusivity

\(\beta\) :

Deborah number

\(\Lambda\) :

Stagnation parameter

\(\chi_{1}\) :

Relaxation ratio

\(\chi_{2}\) :

Retardation time

\(\eta\) :

Similarity variable

\(\nu\) :

Kinematic viscosity

\(\mu\) :

Dynamic viscosity

\(\rho\) :

Density

\(\tau\) :

Inclined angle

\(\sigma\) :

Electrical conductivity

\(\sigma *\) :

Stefan–Boltzmann constant

\(\Gamma_{1} ,\,\,\Gamma_{2}\) :

First-order and second-order slip parameters

\(\lambda\) :

Solution domain

\(\tau_{{\text{w}}}\) :

Wall heat flux

\(q_{{\text{w}}}\) :

Surface heat flux

\(\varepsilon_{1}\), \(\varepsilon_{2}\), \(\varepsilon_{3}\), \(\varepsilon_{4}\) :

Constants

\(f\) :

Base fluid

\(nf\) :

Nanofluid

\({\text{CNT}}\) :

Carbon nanotube

References

  1. Waqar, A.K.; Culham, R.; Rizwan, U.H.: Heat transfer analysis of Magneto hydrodynamics water functionalized carbon nanotube flow over a static/moving wedge. J. Nanomater. 13, 934367 (2015)

    Google Scholar 

  2. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–64 (1991)

    Article  CAS  ADS  Google Scholar 

  3. Baughman, R.H.; Zakhidov, A.A.; De Heer, W.A.: Carbon nanotubes the route toward applications. Science 297, 787–792 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Nazeer, M., et al.: Multi-phase flow of Jeffrey Fluid bounded within magnetized horizontal surface. Surfaces and Interfaces 22, 100846 (2021). https://doi.org/10.1016/j.surfin.2020.100846

    Article  Google Scholar 

  5. Chu, Y.-M.; Khan, M.I.; Waqas, H.; Farooq, U.; Khan, S.U.; Nazeer, M.: Numerical simulation of squeezing flow Jeffrey nanofluid confined by two parallel disks with the help of chemical reaction: effects of activation energy and microorganisms. Int. J. Chem. Reactor Eng. 19(7), 717–725 (2021). https://doi.org/10.1515/ijcre-2020-0165

    Article  Google Scholar 

  6. Abbas, S.Z.; Nayak, M.K.; Mabood, F.; Dogonchi, A.S.; Chu, Y.; Khan, W.A.: Darcy Forchheimer electromagnetic stretched flow of carbon nanotubes over an inclined cylinder: Entropy optimization and quartic chemical reaction. Math Methods App Sci (2020). https://doi.org/10.1002/mma.6956

    Article  Google Scholar 

  7. Hayat, T.; Asad, S.; Alsaedi, A.: Analysis of the flow of Jeffrey fluid with nanoparticles. Chinese Phys. B 24, 044702 (2015)

    Article  ADS  Google Scholar 

  8. Turkyilmazoglu, M.: Exact analytical solution for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffery fluid. Int. J. Heat Mass Transfer. 57, 82–88 (2013)

    Article  Google Scholar 

  9. Mahabaleshwar, U.S.; Nagaraju, K.R.; Sheremet, M.A.; Baleanu, D.; Lorenzini, E.: Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip. Chin. J. Phys. 63, 130–137 (2020)

    Article  MathSciNet  Google Scholar 

  10. Mahabaleshwar, U.S.; Vinay Kumar, P.N.; Sakanaka, P.H.; Lorenzini, G.: An MHD Effect on a Newtonian Fluid Flow Due to a Superlinear Stretching Sheet. J. Eng. Thermophys. 27(4), 501–506 (2018). https://doi.org/10.1134/S1810232818040112

    Article  Google Scholar 

  11. Siddheshwar, P.G.; Chan, A.; Mahabaleshwar, U.S.: Suction-induced magnetohydrodynamics of a viscoelastic fluid over a stretching surface within a porous medium. IMA J. Appl. Math. 79, 445–458 (2014)

    Article  MathSciNet  Google Scholar 

  12. Mahabaleshwar, U.S.; Sneha, K.N.; Huang, H.-N.: An effect of Magnato hydrodynamics and radiation on Carbon nanotubes-Water-based nanofluid due to a stretching sheet in a Newtonian fluid. Case Stud. Therm. Eng. 28, 101462 (2021)

    Article  Google Scholar 

  13. Siddheshwar, P.G.; Mahabaleshwar, U.S.; Andersson, H.I.: A new analytical procedure for solving the non-linear differential equation arising from the stretching sheet problem. Int. J. Appl. Mech. Eng. 18, 955–964 (2013)

    Article  Google Scholar 

  14. Ramesh, B.K.; Shreenivas, R.K.; Achala, L.N.; Bujurke, N.M.: The exact solution of the two-dimensional Magnato hydrodynamics boundary layer flows over a semi-infinite flat plate. Commun. Nonlinear Sci. Numer. Simul. 18, 1151–1161 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bujurke, N.M.; Kudenatti, R.B.: Magneto hydrodynamics lubrication flow between rough rectangular plates. Fluid Dyn. Res. 39, 334 (2007)

    Article  ADS  Google Scholar 

  16. Mahantesh, M.N.; Vajravelu, K.; Abel, M.S.; Siddalingappa, M.N.: Second-order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition. Int. J. Therm. Sci. 58, 143–150 (2012)

    Article  Google Scholar 

  17. Siddheshwar, P.G.; Mahabaleshwar, U.S.: Effects of radiation and heat source on Magneto hydrodynamics flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non-Linear Mech. 40, 807–820 (2005)

    Article  ADS  Google Scholar 

  18. Mahabaleshwar, U.S.; Vishalakshi, A.B.; Bognar, G.V., et al.: Effect of thermal radiation on the flow of a boussinesq couple stress nanofluid over a porous nonlinear stretching sheet. Int. J. Appl. Comput. Math. 8, 169 (2022). https://doi.org/10.1007/s40819-022-01355-9

    Article  MathSciNet  Google Scholar 

  19. Sneha, K.N.; Mahabaleshwar, U.S.; Bennacer, R.; Ganaoui, M.E.L.: Darcy brinkman equations for hybrid dusty nanofluid flow with heat transfer and mass transpiration. Computation 9, 118 (2021)

    Article  CAS  Google Scholar 

  20. Khan, M.I.; Khan, S.U.; Jameel, M.; Chu, Y.-M.; Tlili, I.; Kadry, S.: Signifiance of temperature-dependent viscosity and thermal conductivity of Walter’s B nanoliquid when sinusodal wall and motile microorganisms density are significant. Surf. Interfaces 22, 100849 (2021). https://doi.org/10.1016/j.surfin.2020.100849

    Article  CAS  Google Scholar 

  21. Mahabaleshwar, U.S.; Nagaraju, K.R.; Nadagouda, M.N.; Bennacer, R.; Baleanu, D.: An Magneto hydrodynamics viscous liquid stagnation point flow and heat transfer with thermal radiation & transpiration. J. Therm. Sci. Eng. Progress 16, 100379 (2020)

    Article  Google Scholar 

  22. Anuar, N.S.; Norfifah, B.; Norihan, M.A.; Haliza, R.: Mixed convection flow and heat transfer of carbon nanotubes over an exponentially stretching/shrinking sheet with suction and slip effect. J. Adv. Res. Fluid Mech. Therm. Sci. 59, 232–242 (2019)

    Google Scholar 

  23. Anwar, T.; Kumam, P.; Asifa, K.I.; Phatipha, T.: Generalized unsteady Magneto hydrodynamics natural convective flow of Jeffery model with ramped wall velocity and Newtonian heating: a Caputo-Fabrizio approach. Chin. J. Phys. 59, 1323 (2020)

    Google Scholar 

  24. Khan, W.A.; Khan, Z.H.; Rahi, M.: Fluid flow and heat transfer of carbon nanotubes along with a flat plate with Navier slip boundary. Appl. Nanosci. 4, 633–641 (2014)

    Article  CAS  ADS  Google Scholar 

  25. Shalini, J.; Manjeet, K.; Amit, P.: Unsteady Magnato hydrodynamics chemically reacting mixed convection nano-fluids flow past an inclined pours stretching sheet with slip effect and variable thermal radiation and heat source. Sci. Direct 5, 6297–6312 (2018)

    Google Scholar 

  26. Yana, S.R.; Mohsen, I.; Mikhail, A.S.; Ioan, I.; Hakan, F.; Oztope, M.A.: Inclined Lorentz force impact on convective-radiative heat exchange of micropolar nanofluid inside a porous enclosure with tilted elliptical heater. Int. Commun. Heat Mass Transfer 117, 104762 (2020)

    Article  Google Scholar 

  27. Anusha, T.; Huang, H.-N.; Mahabaleshwar, U.S.: Two-dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation. J. Taiwan Inst. Chem. Eng. 127, 17 (2021)

    Article  Google Scholar 

  28. Anusha, T.; Mahabaleshwar, U.S; Sheikhnejad, Y.: An Magneto hydrodynamics of nanofluid flow over a porous stretching/shrinking plate with mass transpiration and Brinkman ratio. Transport in Porous Media. (2021)

  29. Mahabaleshwar, U.S.; Anusha, T.; Sakanaka, P.H.; Bhattacharyya, S.: The impact of inclined Lorentz force and Schmidt number on chemically reactive Newtonian fluid flow on a stretchable surface when Stefan blowing and thermal radiation are significant. Arab. J. Sci. Eng. 46, 12427 (2021)

    Article  CAS  Google Scholar 

  30. Hussain, S.; Aly, A.M.; Öztop, H.F.: Magneto-bioconvection flow of a hybrid nanofluid in the presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle. Int. Commun. Heat Mass Transfer 134, 106029 (2022)

    Article  CAS  Google Scholar 

  31. Selimefendigil, F.; Öztop, H.F.: Thermal management for conjugate heat transfer of curved solid conductive panel coupled with different cooling systems using non-Newtonian power law nanofluid applicable to photovoltaic panel systems. Int. J. Therm. Sci. 173, 107390 (2022)

    Article  Google Scholar 

  32. Pavlov, K.B.: Magnetohydrodynamic flow of an incompressible viscous liquid caused by deformation of plane surface. Magnetnaya Gidrodinamica 4, 146–147 (1974)

    Google Scholar 

  33. Reddy, Y.D.; Goud, B.S.; Nisar, K.S.; Alshahrani, B.; Mahmoud, M.; Park, C.: Heat absorption/generation effect on MHD heat transfer fluid flow along a stretching cylinder with a porous medium. Alexandria Eng. J. 64, 659–666 (2023). https://doi.org/10.1016/j.aej.2022.08.049

    Article  Google Scholar 

  34. Zahor, F.A.; Jain, R.; Ali, A.O.; Masanja, V.G.: Modeling entropy generation of magnetohydrodynamics flow of nanofluid in a porous medium: a review. Int. J. Numer. Methods Heat Fluid Flow. 33(2), 751–771 (2023). https://doi.org/10.1108/HFF-05-2022-0266

    Article  Google Scholar 

  35. Ikram, M.D.; Imran, M.A.; Chu, Y.M.; Akgül, A.: Magneto hydrodynamics flow of a newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles. Comb. Chem. High Throughput Screen. 25(7), 1087–1102 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. Liaquat, A.L.; Zurni, O.; Sumera, D.; Yuming, C.; Ilyas, K.; Kottakkaran, S.N.: Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: partial slip conditions. Comput. Mater. Continua 66(2), 1963–1975 (2021)

    Article  Google Scholar 

  37. Rosseland, S.: Astrophysik and atomtheoretische Grundlagen. Springer- Verlag, Berlin (1931)

    Book  Google Scholar 

  38. Qureshi, M.A.Z.; Bilal, S.; Chu, Y.-M.; Farooq, A.B.: Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis. J. Mol. Liq. 325, 115211 (2021). https://doi.org/10.1016/j.molliq.2020.115211

    Article  CAS  Google Scholar 

  39. Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Mech. 21, 645–647 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Nihaal or H. F. Oztop.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sneha, K.N., Mahabaleshwar, U.S., Nihaal, K.M. et al. An Magnetohydrodynamics Effect of Non-Newtonian Fluid Flows Over a Stretching/Shrinking Surface with CNT. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08528-8

Keywords

Navigation