Skip to main content
Log in

Improving Thermal Management of CPU by Surface Roughening of Heat Sinks

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Proper temperature management in electrical devices greatly boosts their performance. Thus, to maintain electrical devices at their optimal efficiency, combined hardware/software solutions are utilized for their thermal management. Here, we present a cost-effective, environmentally benign, and easy-to-implement chemical etching method to fabricate heat sinks with nano-sized roughened surfaces that can be utilized for the thermal management of central process units (CPUs) in computers. The fabricated heat sink was connected to a CPU dual cores Intel Pentium G2020 running two different benchmark programs from SPEC CPU2006 at a constant frequency. Nano-roughened heat sink (NRHS) reduced the maximum CPU temperature by nearly 4–8 °C and improved the program execution by 26% compared to the conventional heat sink (CHS). Meanwhile, a 57% increase in CPU lifetime was estimated, on average (comparing NRHS with CHS), which was aligned with the results obtained from imaging with a thermal camera. The operating temperature of the CPU connected to CHS at 2.1 GHz was almost the same as the operating temperature of CPU connected to NRHS at 2.9 GHz which means nearly 40% improvement in the processing frequency without increasing the operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yun, B.; Shin, K.G.; Wang, S.: Thermal-Aware Scheduling of Critical Applications Using Job Migration and Power-Gating on Multi-core Chips. In: 2011IEEE 10th International Conference on Trust, Security and Privacy in Computer and Communications pp. 1083–1090 (2011)

  2. Salami, B.; Baharani, M.; Noori, H.: Proactive task migration with a self-adjusting migration threshold for dynamic thermal management of multi-core processors. J. Supercomput. 68(3), 1068–1087 (2014)

    Article  Google Scholar 

  3. Kong, J.; Chung, S.W.; Skadron, K.: Recent thermal management techniques for microprocessors. ACM Comput. Surv. (CSUR). 44(3), 1–42 (2012)

    Article  Google Scholar 

  4. Lei, Y.; Fu, Y.; Wang, T.; Liu, Y.; Patel, P.; Curran, W.J.; Liu, T.; Yang, X.: 4D-CT deformable image registration using multiscale unsupervised deep learning. Phys. Med. Biol. 65(8), 085003 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chéour, R.; Khriji, S.; Götz, M.; Abid, M.; Kanoun, O.: Accurate dynamic voltage and frequency scaling measurement for low-power microcontrollors in wireless sensor networks. Microelectr. J. 105, 104874 (2020)

    Article  Google Scholar 

  6. Rizvandi, N.B.; Taheri, J.; Zomaya, A.Y.: Some observations on optimal frequency selection in DVFS-based energy consumption minimization. J. Parallel Distrib. Comput. 71(8), 1154–1164 (2011)

    Article  Google Scholar 

  7. Elsayed, M.L.; Mesalhy, O.: Effect of a slotted shield on thermal and hydraulic performance of a heat sink. J. Electron. Packag. 137(1), 011004 (2015)

    Article  Google Scholar 

  8. Khattak, Z.; Ali, H.M.: Air cooled heat sink geometries subjected to forced flow: a critical review. Int. J. Heat Mass Transf. 130, 141–161 (2019)

    Article  Google Scholar 

  9. Kumar, S.; Sarkar, M.; Singh, P.K.; Lee, P.S.: Study of thermal and hydraulic performance of air cooled minichannel heatsink with novel geometries. Int. Commun. Heat Mass Transf. 103, 31–42 (2019)

    Article  Google Scholar 

  10. Liu, D.; Zhao, F.-Y.; Yang, H.-X.; Tang, G.-F.: Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy. 83, 29–36 (2015)

    Article  CAS  Google Scholar 

  11. Xiahou, G.; Zhang, J.; Ma, R.; Liu, Y.: Novel heat pipe radiator for vertical CPU cooling and its experimental study. Int. J. Heat Mass Transf. 130, 912–922 (2019)

    Article  CAS  Google Scholar 

  12. Zhou, G.; Li, J.; Jia, Z.: Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module. Appl. Energy. 239, 859–875 (2019)

    Article  ADS  Google Scholar 

  13. Farzanehnia, A.; Khatibi, M.; Sardarabadi, M.; Passandideh-Fard, M.: Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers. Manag. 179, 314–325 (2019)

    Article  CAS  Google Scholar 

  14. Zou, D.; Liu, X.; He, R.; Zhu, S.; Bao, J.; Guo, J.; Hu, Z.; Wang, B.: Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module. Energy Convers. Manag. 180, 1196–1202 (2019)

    Article  CAS  Google Scholar 

  15. Khaleduzzaman, S.; Sohel, M.; Saidur, R.; Mahbubul, I.; Shahrul, I.; Akash, B.; Selvaraj, J.: Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. Int. Commun. Heat Mass Transf. 57, 118–127 (2014)

    Article  CAS  Google Scholar 

  16. Khaleduzzaman, S.; Mahbubul, I.; Sohel, M.; Saidur, R.; Selvaraj, J.; Ward, T.; Niza, M.: Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink. Int. J. Heat Mass Transf. 115, 77–85 (2017)

    Article  CAS  Google Scholar 

  17. Taheri, A.; Moghadam, M.G.; Mohammadi, M.; Passandideh-Fard, M.; Sardarabadi, M.: A new design of liquid-cooled heat sink by altering the heat sink heat pipe application: experimental approach and prediction via artificial neural network. Energy Convers. Manag. 206, 112485 (2020)

    Article  CAS  Google Scholar 

  18. Gao, Q.; Liu, Y.; Wang, G.; Deng, F.; Zhu, J.: An experimental investigation of refrigerant emergency spray on cooling and oxygen suppression for overheating power battery. J. Power Sources. 415, 33–43 (2019)

    Article  CAS  ADS  Google Scholar 

  19. Wang, J.-X.; Li, Y.-Z.; Mao, Y.-F.; Li, E.-H.; Ning, X.; Ji, X.-Y.: Comparative study of the heating surface impact on porous-material-involved spray system for electronic cooling–an experimental approach. Appl. Therm. Eng. 135, 537–548 (2018)

    Article  Google Scholar 

  20. Yeh, L.-T.; Chu, R.C.: Thermal Management of Microelectronic Equipment: Heat Transfer Theory, Analysis Methods and Design Practices (2002)

  21. Yeh, L.-T.; Chu, R.C.: Thermal Management of Telecommunications Equipment (2013)

  22. Moore, A.L.; Shi, L.: Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014)

    Article  CAS  Google Scholar 

  23. Ventola, L.; Robotti, F.; Dialameh, M.; Calignano, F.; Manfredi, D.; Chiavazzo, E.; Asinari, P.: Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 75, 58–74 (2014)

    Article  Google Scholar 

  24. Attar, M.R.; Mohammadi, M.; Taheri, A.; Hosseinpour, S.; Passandideh-Fard, M.; Haddad Sabzevar, M.; Davoodi, A.: Heat transfer enhancement of conventional aluminum heat sinks with an innovative, cost-effective, and simple chemical roughening method. Therm. Sci. Eng. Progr. 20, 100742 (2020)

    Article  Google Scholar 

  25. Hsieh, S.-S.; Liauh, C.-T.; Ku, A.C.: Thermal analysis of the performances of helical-type, roughened, double-pipe heat exchangers. Appl. Energy 26(1), 67–73 (1987)

    Article  CAS  ADS  Google Scholar 

  26. Sadaghiani, A.K.; Saadi, N.S.; Parapari, S.S.; Karabacak, T.; Keskinoz, M.; Koşar, A.: Boiling heat transfer performance enhancement using micro and nano structured surfaces for high heat flux electronics cooling systems. Appl. Therm. Eng. 127, 484–498 (2017)

    Article  CAS  Google Scholar 

  27. Liang, G.; Mudawar, I.: Review of pool boiling enhancement by surface modification. Int. J. Heat Mass Transf. 128, 892–933 (2019)

    Article  Google Scholar 

  28. Wen, D.; Wang, B.: Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int. J. Heat Mass Transf. 45(8), 1739–1747 (2002)

    Article  CAS  Google Scholar 

  29. Bopche, S.B.; Tandale, M.S.: Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int. J. Heat Mass Transf. 52(11–12), 2834–2848 (2009)

    Article  Google Scholar 

  30. Phu, N.M.; Tuyen, V.; Ngo, T.T.: Augmented heat transfer and friction investigations in solar air heater artificially roughened with metal shavings. J. Mech. Sci. Technol. 33(7), 3521–3529 (2019)

    Article  Google Scholar 

  31. Ceylan, K.; Kelbaliyev, G.: The roughness effects on friction and heat transfer in the fully developed turbulent flow in pipes. Appl. Therm. Eng. 23(5), 557–570 (2003)

    Article  Google Scholar 

  32. Chakroun, W.; Abdel-Rahman, A.; Al-Fahed, S.: Heat transfer augmentation for air jet impinged on a rough surface. Appl. Therm. Eng. 18(12), 1225–1241 (1998)

    Article  Google Scholar 

  33. Oguntala, G.; Abd-Alhameed, R.; Sobamowo, G.; Abdullahi, H.-S.: Improved thermal management of computer microprocessors using cylindrical-coordinate micro-fin heat sink with artificial surface roughness. Eng. Sci. Technol. Int. J. 21(4), 736–744 (2018)

    Google Scholar 

  34. Attar, M.R.; Khajavian, E.; Hosseinpour, S.; Davoodi, A.: Fabrication of micro–nano-roughened surface with superhydrophobic character on an aluminium alloy surface by a facile chemical etching process. Bull. Mater. Sci. 43(1), 31 (2019)

    Article  Google Scholar 

  35. Khajavian, E.; Attar, M.R.; Mohammadi Zahrani, E.; Liu, W.; Davoodi, A.; Hosseinpour, S.: Tuning surface wettability of aluminum surface and its correlation with short and long term corrosion resistance in saline solutions. Surf. Coat. Technol. 429, 127950 (2022)

    Article  CAS  Google Scholar 

  36. Davis, J.R.: Aluminum and Aluminum Alloys (1993)

  37. Liu, J.; Rao, Z.H.; Liao, S.M.; Wang, P.-C.: Modeling of transport phenomena and solidification cracking in laser spot bead-on-plate welding of AA6063-T6 alloy. Part II: simulation results and experimental validation. Int. J. Adv. Manuf. Technol. 74, 285–296 (2014)

    Article  Google Scholar 

  38. Sivashankar, M.; Selvam, C.; Manikandan, S.; Harish, S.: Performance improvement in concentrated photovoltaics using nano-enhanced phase change material with graphene nanoplatelets. Energy. 208, 118408 (2020)

    Article  CAS  Google Scholar 

  39. Horton, D.J.; Zhu, A.W.; Scully, J.; Neurock, M.: Crystallographic controlled dissolution and surface faceting in disordered face-centered cubic FePd. MRS Commun. 4, 113–119 (2014)

    Article  CAS  Google Scholar 

  40. Ghazi, T.; Attar, M.R.; Ghorbani, A.; Alshihmani, H.; Davoodi, A.; Passandideh-Fard, M.; Sardarabadi, M.: Synergistic effect of active-passive methods using fins surface roughness and fluid flow for improving cooling performance of heat sink heat pipes. Exp. Heat Transf. 1–16 (2023)

  41. Webber, A.: Calculating useful lifetimes of embedded processors. Application report, Texas Instruments. 1-6 (2014)

  42. White, M.; Cooper, M.; Johnston, A.: Users guide on scaled CMOS reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance (2011)

  43. Escobar, L.; Meeker, W.: A review of accelerated test models. Stat. Sci. 21, 552–577 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Sunflower Industrial Research Co. (SIRCO) support for LED thermal management. S.H. thanks W. Peukert and Emerging Talents Initiative (ETI) 2018/2_Tech_06, FAU, Germany, and BMBF-MSRT (Grant ID: CAlSAB), Germany for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinpour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attar, M.R., Kazemi, M., Salami, B. et al. Improving Thermal Management of CPU by Surface Roughening of Heat Sinks. Arab J Sci Eng 49, 2153–2164 (2024). https://doi.org/10.1007/s13369-023-08182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08182-0

Keywords

Navigation