Skip to main content
Log in

Theoretical Approach towards Benzodithiophene-Based Chromophores with Extended Acceptors for Prediction of Efficient Nonlinear Optical Behaviour

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current research was aimed to examine the NLO properties of novel benzodithiophene-based donor–acceptor (D-A)-type compounds (BDTD1–BDTD8) via structural modulation of reference compound (BDTR). Optimization of the reference compound (BDTR) along with eight derivatives was accomplished at M06/6-311G(d,p) level. Subsequently, the optimized geometries were further employed to execute additional analyses: UV–Vis absorption, natural population analysis (NPA), NLO, frontier molecular orbitals (FMOs) and natural bond orbital (NBO) properties at the above-mentioned functional. All the tailored compounds (BDTD1–BDTD8) were reported with less energy difference in comparison with BDTR. The descending order of compounds accordant to Egap values was found to be as BDTR > BDTD1 > BDTD8 > BDTD4 > BDTD2 > BDTD5 > BDTD7 > BDTD6 > BDTD3. Furthermore, assisted by FMOs analysis, density of states (DOS) computations demonstrated significant charge mobility from HOMO towards LUMO in the derivatives. Global reactivity descriptors correspond to Egap values, BDTD3 with least energy difference accompanied with less hardness (1.028 eV) and highest softness (0.486 eV) among all the derivatives. BDTD3 exhibited the highest value of λmax (717.211 nm) in all the designed compounds relative to BDTR (576.161 nm). For all fabricated chromophores, the βtot values are presented in the decreasing order: BDTD3 > BDTD7 > BDTD6 > BDTD5 > BDTD2 > BDTD4 > BDTD1 > BDTD8 > BDTR. Interestingly, the highest values as 2.324 × 10–27 and 4.302 × 10–32 esu of βtot and γtot, respectively, were indicated by BDTD3 compound. Valuable NLO findings explored that our derivatives might be significant candidates for nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Sivasankari, B.; Roopan, S.M.: L-Malic acid-doped Guanidinium Carbonate crystal: a New NLO material and its photoluminescence study. Optik 226, 165909 (2021)

    Google Scholar 

  2. Xu, H.-L.; Sun, S.-L.; Muhammad, S.; Su, Z.-M.: Three-propeller-blade-shaped electride: remarkable alkali-metal-doped effect on the first hyperpolarizability. Theoret. Chem. Acc. 128, 241–248 (2011)

    Google Scholar 

  3. Khalid, M.; Ali, A.; Jawaria, R.; Asghar, M.A.; Asim, S.; Khan, M.U.; Hussain, R.; Ur Rehman, M.F.; Ennis, C.J.; Akram, M.S.: First principles study of electronic and nonlinear optical properties of A-D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Advances. 10, 22273–22283 (2020)

    Google Scholar 

  4. Saeed, A.; Muhammad, S.; Rehman, S.; Bibi, S.; Al-Sehemi, A.G.; Khalid, M.: Exploring the impact of central core modifications among several push-pull configurations to enhance nonlinear optical response. J. Mol. Graph. Model. 100, 107665 (2020)

    Google Scholar 

  5. Khan, M.U.; Khalid, M.; Ibrahim, M.; Braga, A.A.C.; Safdar, M.; Al-Saadi, A.A.; Janjua, M.R.S.A.: First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J. Phys. Chem. C. 122, 4009–4018 (2018)

    Google Scholar 

  6. Kosar, N.; Ayub, K.; Mahmood, T.: Surface functionalization of twisted graphene C32H15 and C104H52 derivatives with alkalis and superalkalis for NLO response; a DFT study. J. Mol. Graph. Model. 102, 107794 (2021)

    Google Scholar 

  7. Zhong, R.-L.; Xu, H.-L.; Muhammad, S.; Zhang, J.; Su, Z.-M.: The stability and nonlinear optical properties: encapsulation of an excess electron compound LiCN⋯ Li within boron nitride nanotubes. J. Mater. Chem. 22, 2196–2202 (2012)

    Google Scholar 

  8. Vasumathi, S.; Jeyakumar, H.J.; Selvarajan, P.: Spectral, NLO, thermal, hardness and SEM studies of phosphate doped bis-urea oxalic acid crystals for laser applications. Chin. J. Phys. 73, 1–12 (2021)

    Google Scholar 

  9. Ahsin, A.; Ayub, K.: Remarkable electronic and NLO properties of bimetallic superalkali clusters: a DFT study. J. Nanostruct. Chem. 2, 1–17 (2021)

    Google Scholar 

  10. Khan, B.; Khalid, M.; Shah, M.R.; Tahir, M.N.; Asif, H.M.; Aliabad, H.A.R.; Hussain, A.: Synthetic, spectroscopic, SC-XRD and nonlinear optical analysis of potent hydrazide derivatives: a comparative experimental and DFT/TD-DFT exploration. J. Mol. Struct. 1200, 127140 (2020)

    Google Scholar 

  11. Akram, M.; Adeel, M.; Khalid, M.; Tahir, M.N.; Khan, M.U.; Asghar, M.A.; Ullah, M.A.; Iqbal, M.: A combined experimental and computational study of 3-bromo-5-(2, 5-difluorophenyl) pyridine and 3, 5-bis (naphthalen-1-yl) pyridine: Insight into the synthesis, spectroscopic, single crystal XRD, electronic, nonlinear optical and biological properties. J. Mol. Struct. 1160, 129–141 (2018)

    Google Scholar 

  12. Ivanov, I.P.; Li, X.; Dolan, P.R.; Gu, M.: Nonlinear absorption properties of the charge states of nitrogen-vacancy centers in nanodiamonds. Opt. Lett. 38, 1358–1360 (2013)

    Google Scholar 

  13. Zhang, B.; Shi, G.; Yang, Z.; Zhang, F.; Pan, S.: Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 56, 3916–3919 (2017)

    Google Scholar 

  14. Li, M.; Li, Y.; Zhang, H.; Wang, S.; Ao, Y.; Cui, Z.: Molecular engineering of organic chromophores and polymers for enhanced bulk second-order optical nonlinearity. J. Mater. Chem. C. 5, 4111–4122 (2017)

    Google Scholar 

  15. Zhao, Y.; Li, H.; Shao, Z.; Xu, W.; Meng, X.; Song, Y.; Hou, H.: Investigation of regulating third-order nonlinear optical property by coordination interaction. Inorg. Chem. 58, 4792–4801 (2019)

    Google Scholar 

  16. Issa, Y.M.; Abdel-Latif, S.A.; El-Ansary, A.L.; Hassib, H.B.: The synthesis, spectroscopic characterization, DFT/TD-DFT/PCM calculations of the molecular structure and NBO of the novel charge-transfer complexes of pyrazine Schiff base derivatives with aromatic nitro compounds. New J. Chem. 45, 1482–1499 (2021)

    Google Scholar 

  17. Abdel-Kader, N.S.; Abdel-Latif, S.A.; El-Ansary, A.L.; Sayed, A.G.: Spectroscopic studies, density functional theory calculations, non-linear optical properties, biological activity of 1-hydroxy-4-((4-(N-(pyrimidin-2-yl) sulfamoyl) phenyl) diazenyl)-2-naphthoic acid and its chelates with Nickel (II), Copper (II), Zinc (II) and Palladium (II) metal ions. J. Mol. Struct. 1223, 129203 (2021)

    Google Scholar 

  18. Janjua, M.R.S.A.: Nonlinear optical response of a series of small molecules: quantum modification of π-spacer and acceptor. J. Iran. Chem. Soc. 14, 2041–2054 (2017)

    Google Scholar 

  19. Coe, B.J.; Foxon, S.P.; Harper, E.C.; Raftery, J.; Shaw, R.; Swanson, C.A.; Asselberghs, I.; Clays, K.; Brunschwig, B.S.; Fitch, A.G.: Nonlinear optical and related properties of iron (II) pentacyanide complexes with quaternary nitrogen electron acceptor units. Inorg. Chem. 48, 1370–1379 (2009)

    Google Scholar 

  20. Janjua, M.R.S.A.; Jamil, S.; Mahmood, A.; Zafar, A.; Haroon, M.; Bhatti, H.N.: Solvent-dependent non-linear optical properties of 5, 5′-disubstituted-2, 2′-bipyridine complexes of ruthenium (II): a quantum chemical perspective. Aust. J. Chem. 68, 1502–1507 (2015)

    Google Scholar 

  21. Janjua, M.R.S.A.; Yamani, Z.H.; Jamil, S.; Mahmood, A.; Ahmad, I.; Haroon, M.; Tahir, M.H.; Yang, Z.; Pan, S.: First principle study of electronic and non-linear optical (NLO) properties of triphenylamine dyes: interactive design computation of new NLO compounds. Aust. J. Chem. 69, 467–472 (2015)

    Google Scholar 

  22. Lacroix, P.G.; Malfant, I.; Lepetit, C.: Second-order nonlinear optics in coordination chemistry: an open door towards multi-functional materials and molecular switches. Coord. Chem. Rev. 308, 381–394 (2016)

    Google Scholar 

  23. Kato, S.; Diederich, F.: Non-planar push–pull chromophores. Chem. Commun. 46, 1994–2006 (2010)

    Google Scholar 

  24. Roncali, J.: Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009)

    Google Scholar 

  25. Mahmood, A.; Abdullah, M.I.; Nazar, M.F.: Quantum chemical designing of novel organic non-linear optical compounds. Bull. Korean Chem. Soc. 35, 1391–1396 (2014)

    Google Scholar 

  26. Wadsworth, A.; Moser, M.; Marks, A.; Little, M.S.; Gasparini, N.; Brabec, C.J.; Baran, D.; McCulloch, I.: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596–1625 (2019)

    Google Scholar 

  27. Liu, W.; Xu, X.; Yuan, J.; Leclerc, M.; Zou, Y.; Li, Y.: Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett. 6, 598–608 (2021)

    Google Scholar 

  28. Lin, Y.; Zhan, X.: Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 1, 470–488 (2014)

    Google Scholar 

  29. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J.: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017)

    Google Scholar 

  30. Liang, N.; Jiang, W.; Hou, J.; Wang, Z.: New developments in non-fullerene small molecule acceptors for polymer solar cells. Mater. Chem. Front. 1, 1291–1303 (2017)

    Google Scholar 

  31. Saeed, M.U.; Iqbal, J.; Mehmood, R.F.; Akram, S.J.; El-Badry, Y.A.; Noor, S.; Khera, R.A.: End-capped modification of Y-Shaped dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (TPBT) based non-fullerene acceptors for high performance organic solar cells by using DFT approach. Surf. Interfaces. 30, 101875 (2022)

    Google Scholar 

  32. Wang, L.; An, Q.; Yan, L.; Bai, H.-R.; Jiang, M.; Mahmood, A.; Yang, C.; Zhi, H.; Wang, J.-L.: Non-fullerene acceptors with hetero-dihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency. Energy Environ. Sci. 15, 320–333 (2022)

    Google Scholar 

  33. Ge, G.-Y.; Li, J.-T.; Wang, J.-R.; Xiong, M.; Dong, X.; Li, Z.-J.; Li, J.-L.; Cao, X.-Y.; Lei, T.; Wang, J.-L.: Unveiling the interplay among end group, molecular packing, doping level, and charge transport in N-doped small-molecule organic semiconductors. Adv. Func. Mater. 32, 2108289 (2022)

    Google Scholar 

  34. Yao, C.; Yang, Y.; Li, L.; Bo, M.; Peng, C.; Huang, Z.; Wang, J.: Replacing the cyano (–C [triple bond, length as m-dash] N) group to design environmentally friendly fused-ring electron acceptors. Phys. Chem. Chem. Phys. 23, 18085–18092 (2021)

    Google Scholar 

  35. Yu, Q.; Xu, J.; Fu, J.; Xu, T.; Yan, X.; Chen, S.; Chen, H.; Sun, K.; Kan, Z.; Lu, S.: Crystallinity dictates the selection of fullerene or non-fullerene acceptors in a small molecule organic solar cell. Dyes Pigm. 187, 109085 (2021)

    Google Scholar 

  36. Frisch, M.J.; Clemente, F.R.: Gaussian 09, revision a. 01, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe. 20–44 (2009)

  37. Bryantsev, V.S.; Diallo, M.S.; Van Duin, A.C.; Goddard, W.A., III.: Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput. 5, 1016–1026 (2009)

    Google Scholar 

  38. Bibi, A.; Muhammad, S.; UrRehman, S.; Bibi, S.; Bashir, S.; Ayub, K.; Adnan, M.; Khalid, M.: Chemically modified quinoidal oligothiophenes for enhanced linear and third-order nonlinear optical properties. ACS Omega 6, 24602 (2021)

    Google Scholar 

  39. Khalid, M.; Khan, M.U.; Hussain, R.; Irshad, S.; Ali, B.; Braga, A.A.C.; Imran, M.; Hussain, A.: Exploration of second and third order nonlinear optical properties for theoretical framework of organic D–π–D–π–A type compounds. Opt. Quant. Electron. 53, 1–19 (2021)

    Google Scholar 

  40. Hudson, J.J.; Sauer, B.E.; Tarbutt, M.R.; Hinds, E.A.: Measurement of the electron electric dipole moment using YbF molecules. Phys. Rev. Lett. 89, 023003 (2002)

    Google Scholar 

  41. Alparone, A.: Linear and nonlinear optical properties of nucleic acid bases. Chem. Phys. 410, 90–98 (2013)

    Google Scholar 

  42. Oudar, J.-L.; Chemla, D.S.: Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1977)

    Google Scholar 

  43. Naik, V.S.; Patil, P.S.; Wong, Q.A.; Quah, C.K.; Gummagol, N.B.; Jayanna, H.S.: Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. J. Mol. Struct. 1222, 128901 (2020)

    Google Scholar 

  44. Dennington, R.; Keith, T.; Millam, J.: Semichem Inc. Shawnee Mission KS, GaussView, Version. 5, (2009)

  45. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 1–17 (2012)

    Google Scholar 

  46. Zhurko, G.A.: Chemcraft: http://www.chemcraftprog. com. Received: October. 22, (2014)

  47. O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M.: Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Google Scholar 

  48. Lu, T.; Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)

    Google Scholar 

  49. Afzal, Z.; Hussain, R.; Khan, M.U.; Khalid, M.; Iqbal, J.; Alvi, M.U.; Adnan, M.; Ahmed, M.; Mehboob, M.Y.; Hussain, M.: Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J. Mol. Model. 26, 1–17 (2020)

    Google Scholar 

  50. Hussain, R.; Khan, M.U.; Mehboob, M.Y.; Khalid, M.; Iqbal, J.; Ayub, K.; Adnan, M.; Ahmed, M.; Atiq, K.; Mahmood, K.: Enhancement in photovoltaic properties of N, N-diethylaniline based donor materials by bridging core modifications for efficient solar cells. ChemistrySelect 5, 5022–5034 (2020)

    Google Scholar 

  51. Khan, M.U.; Hussain, R.; Mehboob, M.Y.; Khalid, M.; Ehsan, M.A.; Rehman, A.; Janjua, M.R.S.A.: First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells. Spectrochimica Acta Part A. 245, 118938 (2021)

    Google Scholar 

  52. Haroon, M.; Al-Saadi, A.A.; Janjua, M.R.S.A.: Insights into end-capped modifications effect on the photovoltaic and optoelectronic properties of S-shaped fullerene-free acceptor molecules: a density functional theory computational study for organic solar cells. J. Phys. Org. Chem. 35, e4314 (2022)

    Google Scholar 

  53. Janjua, M.R.S.A.: Prediction and understanding: quantum chemical framework of transition metals enclosed in a B12N12 inorganic nanocluster for adsorption and removal of DDT from the environment. Inorg. Chem. 60, 10837–10847 (2021)

    Google Scholar 

  54. Janjua, M.R.S.A.: How does bridging core modification alter the photovoltaic characteristics of triphenylamine-based hole transport materials? Theoretical understanding and prediction. Chem. A Eur. J. 27, 4197–4210 (2021)

    Google Scholar 

  55. Adeel, M.; Khalid, M.; Ullah, M.A.; Muhammad, S.; Khan, M.U.; Tahir, M.N.; Khan, I.; Asghar, M.; Mughal, K.S. (2010) Exploration of CH⋯F & CF⋯H mediated supramolecular arrangements into fluorinated terphenyls and theoretical prediction of their third-order nonlinear optical response. RSC Adv. 11, 7766–7778.

  56. Khalid, M.; Ali, A.; Abid, S.; Tahir, M.N.; Khan, M.U.; Ashfaq, M.; Imran, M.; Ahmad, A.: Facile ultrasound-based synthesis, SC-XRD, DFT exploration of the substituted acyl-hydrazones: an experimental and theoretical slant towards supramolecular chemistry. ChemistrySelect 5, 14844–14856 (2020)

    Google Scholar 

  57. Jiao, C.; Guo, Z.; Sun, B.; Meng, L.; Wan, X.; Zhang, M.; Zhang, H.; Li, C.; Chen, Y.: An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. J. Mater. Chem. C. 8, 6293–6298 (2020)

    Google Scholar 

  58. Cai, K.; Wu, H.; Hua, T.; Liao, C.; Tang, H.; Wang, L.; Cao, D.: Molecular engineering of the fused azacycle donors in the D-A-π-A metal-free organic dyes for efficient dye-sensitized solar cells. Dyes Pigm. 197, 109922 (2022)

    Google Scholar 

  59. Haroon, M.; Janjua, M.R.S.A.: Prediction of NLO response of substituted organoimido hexamolybedate: First theoretical framework based on p-anisidine adduct [Mo6O18 (p-MeOC6H4N)] 2. Mater. Today Commun. 26, 101880 (2021)

    Google Scholar 

  60. Jezuita, A.; Ejsmont, K.; Szatylowicz, H.: Substituent effects of nitro group in cyclic compounds. Struct. Chem. 32, 179–203 (2021)

    Google Scholar 

  61. Pham, P.-T.; Xia, Y.; Frisbie, C.D.; Bader, M.M.: Single crystal field effect transistor of a Y-shaped ladder-type oligomer. J. Phys. Chem. C. 112, 7968–7971 (2008)

    Google Scholar 

  62. Cai, X.; Burand, M.W.; Newman, C.R.; da Silva Filho, D.A.; Pappenfus, T.M.; Bader, M.M.; Brédas, J.-L.; Mann, K.R.; Frisbie, C.D.: N-and P-channel transport behavior in thin film transistors based on tricyanovinyl-capped oligothiophenes. J. Phys. Chem. B 110, 14590–14597 (2006)

    Google Scholar 

  63. Seo, D.-K.; Hoffmann, R.: Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials. Theoret. Chem. Acc. 102, 23–32 (1999)

    Google Scholar 

  64. Pearson, R.G.: Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc. 107, 6801–6806 (1985)

    Google Scholar 

  65. Parr, R.G.; Yang, W.: Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049–4050 (1984)

    Google Scholar 

  66. Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)

    Google Scholar 

  67. Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Subramanian, V.; Chattaraj, P.K.: Intermolecular reactivity through the generalized philicity concept. Chem. Phys. Lett. 394, 225–230 (2004)

    Google Scholar 

  68. Parr, R.G.; Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Google Scholar 

  69. Politzer, P.; Truhlar, D.G.: Introduction: the role of the electrostatic potential in chemistry. Chem. Appl. 5, 1–6 (1981)

    Google Scholar 

  70. Chattaraj, P.K.; Roy, D.R.: Update 1 of: electrophilicity index. Chem. Rev. 107, PR46–PR74 (2007)

  71. Amiri, S.S.; Makarem, S.; Ahmar, H.; Ashenagar, S.: Theoretical studies and spectroscopic characterization of novel 4-methyl-5-((5-phenyl-1, 3, 4-oxadiazol-2-yl) thio) benzene-1, 2-diol. J. Mol. Struct. 1119, 18–24 (2016)

    Google Scholar 

  72. Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P.K.: Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A 111, 1358–1361 (2007)

    Google Scholar 

  73. Koopmans, T.: The classification of wave functions and eigen-values to the single electrons of an atom. Physica. 1, 104–113 (1934)

    Google Scholar 

  74. Mirkamali, E.S.; Ahmadi, R.; Kalateh, K.; Zarei, G.: 251. Adsorption of Melphalan anticancer drug on the surface of carbon nanotube: a comprehensive DFT study. Int. J. 9, 11 (2020)

    Google Scholar 

  75. Arshad, M.N.; Khalid, M.; Asad, M.; Braga, A.A.; Asiri, A.M.; Alotaibi, M.M.: Influence of peripheral modification of electron acceptors in nonfullerene (O-IDTBR1)-based derivatives on nonlinear optical response: DFT/TDDFT study. ACS Omega 7, 11631–11642 (2022)

    Google Scholar 

  76. Azeem, U.; Khera, R.A.; Naveed, A.; Imran, M.; Assiri, M.A.; Khalid, M.; Iqbal, J.: Tuning of a A-A–D–A–A-type small molecule with benzodithiophene as a central core with efficient photovoltaic properties for organic solar cells. ACS Omega 6, 28923–28935 (2021)

    Google Scholar 

  77. Khan, M.U.; Mehboob, M.Y.; Hussain, R.; Afzal, Z.; Khalid, M.; Adnan, M.: Designing spirobifullerene core based three-dimensional cross shape acceptor materials with promising photovoltaic properties for high-efficiency organic solar cells. Int. J. Quantum Chem. 120, e26377 (2020)

    Google Scholar 

  78. Mahmood, A.; Abdullah, M.I.; Khan, S.U.-D.: Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139, 425–430 (2015)

    Google Scholar 

  79. Lu, X.: DC-C.: Fractal geometry and architecture design: case study review. Chaotic Model. Simul. (CMSIM). 311, 322 (2012)

    Google Scholar 

  80. Khalid, M.; Lodhi, H.M.; Khan, M.U.; Imran, M.: Structural parameter-modulated nonlinear optical amplitude of acceptor–π–D–π–donor-configured pyrene derivatives: a DFT approach. RSC Adv. 11, 14237–14250 (2021)

    Google Scholar 

  81. Mahmood, A.; Khan, S.U.-D.; Rana, U.A.; Tahir, M.H.: Red shifting of absorption maxima of phenothiazine based dyes by incorporating electron-deficient thiadiazole derivatives as π-spacer. Arab. J. Chem. 12, 1447–1453 (2019)

    Google Scholar 

  82. Adeoye, M.D.; Adeogun, A.I.; Adewuyi, S.; Ahmed, S.A.; Odozi, N.W.; Obi-Egbeedi, N.O.: Effect of solvents on the electronic absorption spectra of 9, 14 dibenzo (a, c) phenazine and tribenzo (a, c, i) phenazine. Sci. Res. Essays. 4, 107–111 (2009)

    Google Scholar 

  83. Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M.: Experimental and density functional theory (MEP, FMO, NLO, Fukui functions) and antibacterial activity studies on 2-amino-4-(4-nitrophenyl)-5, 6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 1178, 450–457 (2019)

    Google Scholar 

  84. Khalid, M.; Arshad, M.N.; Murtaza, S.; Shafiq, I.; Haroon, M.; Asiri, A.M.; de AlcântaraMorais, S.F.; Braga, A.A.: Enriching NLO efficacy via designing non-fullerene molecules with the modification of acceptor moieties into ICIF2F: an emerging theoretical approach. RSC Adv. 12, 13412–13427 (2022)

    Google Scholar 

  85. Khalid, M.; Khan, M.U.; Shafiq, I.; Hussain, R.; Ali, A.; Imran, M.; Braga, A.A.; Fayyaz ur Rehman, M.; Akram, M.S.: Structural modulation of π-conjugated linkers in D–π–A dyes based on triphenylamine dicyanovinylene framework to explore the NLO properties. R. Soc. Open Sci. 8, 210570 (2021)

  86. Won, Y.S.; Yang, Y.S.; Kim, J.H.; Ryu, J.-H.; Kim, K.K.; Park, S.S.: Organic photosensitizers based on terthiophene with alkyl chain and double acceptors for application in dye-sensitized solar cells. Energy Fuels 24, 3676–3681 (2010)

    Google Scholar 

  87. Ans, M.; Iqbal, J.; Ayub, K.; Ali, E.; Eliasson, B.: Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells. Mater. Sci. Semicond. Process. 94, 97–106 (2019)

    Google Scholar 

  88. Ans, M.; Iqbal, J.; Ahmad, Z.; Muhammad, S.; Hussain, R.; Eliasson, B.; Ayub, K.: Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 3, 12797–12804 (2018)

    Google Scholar 

  89. Liu, Z.; Lu, T.; Chen, Q.: An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165, 461–467 (2020)

    Google Scholar 

  90. Liu, Z.; Lu, T.: Optical properties of novel conjugated nanohoops: Revealing the effects of topology and size. J. Phys. Chem. C. 124, 7353–7360 (2020)

    Google Scholar 

  91. Yuan, J.; Yuan, Y.; Tian, X.; Wang, H.; Liu, Y.; Feng, R.: Photoswitchable boronic acid derived salicylidenehydrazone enabled by photochromic spirooxazine and fulgide moieties: multiple responses of optical absorption, fluorescence emission, and quadratic nonlinear optics. J. Phys. Chem. C. 123, 29838–29855 (2019)

    Google Scholar 

  92. Hassan, T.; Hussain, R.; Khan, M.U.; Habiba, U.; Irshad, Z.; Adnan, M.; Lim, J.: Development of non-fused acceptor materials with 3D-Interpenetrated structure for stable and efficient organic solar cells. Mater. Sci. Semicond. Process. 151, 107010 (2022)

    Google Scholar 

  93. Köse, M.E.: Evaluation of acceptor strength in thiophene coupled donor–acceptor chromophores for optimal design of organic photovoltaic materials. J. Phys. Chem. A 116, 12503–12509 (2012)

    Google Scholar 

  94. Kim, B.-G.; Zhen, C.-G.; Jeong, E.J.; Kieffer, J.; Kim, J.: Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells: exciton binding energy and electron acceptors. Adv. Func. Mater. 22, 1606–1612 (2012)

    Google Scholar 

  95. Ans, M.; Iqbal, J.; Eliasson, B.; Ayub, K.: Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Comput. Mater. Sci. 159, 150–159 (2019)

    Google Scholar 

  96. Shkir, M.; Muhammad, S.; AlFaify, S.; Chaudhry, A.R.; Al-Sehemi, A.G.: Shedding light on molecular structure, spectroscopic, nonlinear optical and dielectric properties of bis (thiourea) silver (I) nitrate single crystal: a dual approach. Arab. J. Chem. 12, 4612–4626 (2019)

    Google Scholar 

  97. Ali, A.; Khalid, M.; Rehman, M.F.U.; Haq, S.; Ali, A.; Tahir, M.N.; Ashfaq, M.; Rasool, F.; Braga, A.A.C.: Efficient synthesis, SC-XRD, and theoretical studies of O-Benzenesulfonylated pyrimidines: role of noncovalent interaction influence in their supramolecular network. ACS Omega 5, 15115–15128 (2020)

    Google Scholar 

  98. Yang, C.-C.; Zheng, X.-L.; Tian, W.Q.; Li, W.-Q.; Yang, L.: Tuning the edge states in X-type carbon based molecules for applications in nonlinear optics. Phys. Chem. Chem. Phys. 24, 7713–7722 (2022)

    Google Scholar 

  99. Khalid, M.; Khan, M.U.; Shafiq, I.; Hussain, R.; Mahmood, K.; Hussain, A.; Jawaria, R.; Hussain, A.; Imran, M.; Assiri, M.A.: NLO potential exploration for D–π–A heterocyclic organic compounds by incorporation of various π-linkers and acceptor units. Arab. J. Chem. 14, 103295 (2021)

    Google Scholar 

  100. Ashfaq, M.; Ali, A.; Tahir, M.N.; Khalid, M.; Assiri, M.A.; Imran, M.; Munawar, K.S.; Habiba, U.: Synthetic approach to achieve halo imine units: solid-state assembly, DFT based electronic and non linear optical behavior. Chem. Phys. Lett. 803, 139843 (2022)

    Google Scholar 

  101. Buvaneswari, M.; Santhakumari, R.; Usha, C.; Jayasree, R.; Sagadevan, S.: Synthesis, growth, structural, spectroscopic, optical, thermal, DFT, HOMO–LUMO, MEP, NBO analysis and thermodynamic properties of vanillin isonicotinic hydrazide single crystal. J. Mol. Struct. 1243, 130856 (2021)

    Google Scholar 

  102. Mahmood, A.; Khan, S.U.-D.; Rana, U.A.; Janjua, M.R.S.A.; Tahir, M.H.; Nazar, M.F.; Song, Y.: Effect of thiophene rings on UV/visible spectra and non-linear optical (NLO) properties of triphenylamine based dyes: a quantum chemical perspective. J. Phys. Org. Chem. 28, 418–422 (2015)

    Google Scholar 

  103. Adant, C.; Dupuis, M.; Bredas, J.L.: Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int. J. Quantum Chem. 56, 497–507 (1995)

    Google Scholar 

  104. Demircioğlu, Z.; Kaştaş, G.; Kaştaş, Ç.A.; Frank, R.: Spectroscopic, XRD, Hirshfeld surface and DFT approach (chemical activity, ECT, NBO, FFA, NLO, MEP, NPA& MPA) of (E)-4-bromo-2-[(4-bromophenylimino) methyl]-6-ethoxyphenol. J. Mol. Struct. 1191, 129–137 (2019)

    Google Scholar 

  105. Demircioğlu, Z.; Kaştaş, Ç.A.; Büyükgüngör, O.: X-ray structural, spectroscopic and computational approach (NBO, MEP, NLO, NPA, fukui function analyses) of (E)-2-((4-bromophenylimino) methyl)-3-methoxyphenol. Mol. Cryst. Liq. Cryst. 656, 169–184 (2017)

    Google Scholar 

Download references

Acknowledgements

Dr. Muhammad Khalid gratefully acknowledges the financial support of HEC Pakistan (project no. 20-14703/NRPU/R&D/HEC/2021). Authors are thankful for cooperation and collaboration of A.A.C.B from IQ-USP, Brazil, especially for his continuous support and providing computational laboratory facilities. A.A.C.B. (grant 2015/01491-3) is highly thankful to Fundação de Amparo à Pesquisa do Estado de São Paulo for the cooperation and financial assistance. The authors thank the Researchers Supporting Project number (RSP2023R29), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Khalid or Muhammad Adnan Asghar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2470 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M., Maqsood, R., Shafiq, I. et al. Theoretical Approach towards Benzodithiophene-Based Chromophores with Extended Acceptors for Prediction of Efficient Nonlinear Optical Behaviour. Arab J Sci Eng 49, 339–359 (2024). https://doi.org/10.1007/s13369-023-08136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08136-6

Keywords

Navigation