Skip to main content
Log in

Ag/BST/p-Si MFS Device Production and Characterization

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Ag/BST/p-Si/Al device in the complementary-metal–oxide–semiconductor (CMOS) structure has been produced and characterized. The influence of the BST deposition parameters as well as the crystallinity and the surface morphology effect on the electrical properties of the device has been investigated. The effect of Ag metal contact as an electrode on the electrical properties of the device was also discussed. The current–voltage (I–V) and capacitance–voltage (C–V) characteristics of the MIS device have been studied. Frequency (f) and DC bias voltage (V) dependence of the dielectric material and electrical properties of Ag/BST/p-Si/Al have been investigated in the kilohertz frequency range (75–900 kHz) and bias range from − 6 V to + 6 V. Dielectric constant (εʹ), dielectric loss (εʺ), loss tangent (tanδ) and conductance (G) behavior of the MIS device have been discussed in detail. The device showed attracted rectification behavior with high capacitance achievement. Also, the device was frequency independent in kilohertz frequency level without dispersion at room temperature. This device structure which has superior electrical properties can be an attractive candidate for the ferroelectric dynamic random access memories (FDRAM) and radio frequency (RF) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. J. R. Appleby: Electrical and material properties of thin film perovskites. Newcastle University, (2014)

  2. Kaynak, C.B.: Characterization of Perovskite-like High k Dielectric Materials for Metal-Insulator-Metal Capacitors. Springer, Berlin (2013)

    Google Scholar 

  3. Tao, J., et al.: Extrinsic and intrinsic frequency dispersion of high-k materials in capacitance-voltage measurements. Materials 5(12), 1005–1032 (2012). https://doi.org/10.3390/ma5061005

    Article  Google Scholar 

  4. B. Mohammed: The influence of electrodes on Mim BST thin film ceramic capacitor – device production and charachterization. Süleyman Demirel University, 2019

  5. RoHS, “RoHS,” rohsguide, 2019. https://www.rohsguide.com/rohs-reach.htm (accessed Aug. 05, 2019)

  6. Shen, Z., et al.: Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J. Mater. 5(4), 641–648 (2019). https://doi.org/10.1016/j.jmat.2019.06.003

    Article  Google Scholar 

  7. Rao, G.L.N.; Saravanan, K.V.; Raju, K.J.: Tunable interdigital capacitors with Ba0.5Sr 0.5TiO3 thin films on low-k substrates for frequency agile microwave devices. Integr. Ferroelectr. 125(1), 20–28 (2011). https://doi.org/10.1080/10584587.2011.574035

    Article  Google Scholar 

  8. A. A. Saif, Z. Azhar, Z. Jamal, and P. Poopalan: Influence of the grain size on the conduction mechanism of barium strontium titanate thin films. (2011) doi: https://doi.org/10.5560/ZNA.2011-0040

  9. Tio, S.; Ramana, V.; Feng, L.; Lin, W.; Murty, B.S.: Effect of grain size on dielectric and ferroelectric properties of nanostructured. J. Adv. Ceramics 4(1), 46–53 (2015). https://doi.org/10.1007/s40145-015-0130-8

    Article  Google Scholar 

  10. Mao, C., et al.: Degraded grain size effect of barium strontium titanate ceramics under a direct current bias electric field. Mater. Res. Express 4(1), 1–7 (2017). https://doi.org/10.1088/2053-1591/aa523a

    Article  Google Scholar 

  11. Huang, J.; Cao, Y.; Hong, M.; Du, P.: Ag–Ba0.75Sr0.25TiO3 composites with excellent dielectric properties. Appl. Phys. Lett. 92, 22911 (2008). https://doi.org/10.1063/1.2836764

    Article  Google Scholar 

  12. Ortega, N.; Resto, O.; Maslova, O.A.: Compositional engineering of BaTiO3/(Ba, Sr) TiO3 ferroelectric superlattices. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4820576

    Article  Google Scholar 

  13. Horiuchi, N.; Hoshina, T.; Takeda, H.; Sakurai, O.; Tsurumi, T.: Effect of metal-dielectric interfaces on esaility in barium strontium titanate thin-film capacitor. Key Eng. Mater. 445, 140–143 (2010). https://doi.org/10.4028/www.scientific.net/KEM.445.140

    Article  Google Scholar 

  14. R. Balachandran, B. H. Ong, H. Y. Wong, K. B. Tan, and M. M. Rasat: Dielectric characteristics of barium strontium titanate based metal insulator metal capacitor for dynamic random access memory cell. 2012. [Online]. Available: www.electrochemsci.org

  15. Pintilie, L.; Vrejoiu, I.; Alexe, M.: The influence of the top-contact metal on the ferroelectric properties of The influence of the top-contact metal on the ferroelectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3021293

    Article  Google Scholar 

  16. Kim, C.Y.; Lee, H.S.; Woo, J.; Choi, C.K.; Lee, K.: Frequency-dependent capacitance-voltage and conductance-voltage characteristics of low-dielectric-constant SiOC ( -H ) thin films deposited by using plasma-enhanced chemical vapor deposition. J. Korean Phys. Soc. 57(6), 1976–1982 (2010). https://doi.org/10.3938/jkps.57.1976

    Article  Google Scholar 

  17. R. Peelamedu: Effects of deposition temperature and post deposition annealing on the electrical properties of barium strontium titanate thin film for embedded capacitor applications (2004)

  18. R. Peelamedu and R. B. S. Bharathiyar: Effects of deposition temperature and post deposition annealing on the electrical properties of barium strontium titanate thin film for embedded capacitor applications (2000)

  19. Saroukhani, Z.; Tahmasebi, N.; Mahdavi, S.M.; Nemati, A.: Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition. Bull. Mater. Sci. 38(6), 1645–1650 (2015). https://doi.org/10.1007/s12034-015-0982-0

    Article  Google Scholar 

  20. Souza, I.A., et al.: Structural and dielectric properties of Ba0.5Sr0.5(SnxTi1-x)O3 ceramics obtained by the soft chemical method. J. Alloys Compd. 477(1–2), 877–882 (2009). https://doi.org/10.1016/j.jallcom.2008.11.042

    Article  Google Scholar 

  21. Venkata Saravanan, K.; Sudheendran, K.; Ghanashyam Krishna, M.; James Raju, K.C.: Effect of the amorphous-to-crystalline transition in Ba0.5 Sr0.5 TiO3 thin films on optical and microwave dielectric properties. J. Phys. D. Appl. Phys. 42(4), 045401 (2009). https://doi.org/10.1088/0022-3727/42/4/045401

    Article  Google Scholar 

  22. Bayrak, T.; Ozgit-Akgun, C.; Goldenberg, E.: Structural, optical and electrical characteristics BaSrTiOx thin films: effect of deposition pressure and annealing. J. Non. Cryst. Solids 475, 76–84 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.08.036

    Article  Google Scholar 

  23. Fang, T.-H.; Chang, W.-J.; Lin, C.-M.; Ji, L.-W.; Chang, Y.-S.; Hsiao, Y.-J.: Effect of annealing on the structural and mechanical properties of Ba 0.7Sr0.3TiO3 thin films. Mater. Sci. Eng. A 426, 157–161 (2006). https://doi.org/10.1016/j.msea.2006.03.069

    Article  Google Scholar 

  24. Zhang, X.; Zhu, H.; Cheng, C.; Yu, T.; Zhang, D.; Zhong, H.: Single frequency correction based on three-element model for thin dielectric MOS capacitor. Solid State Electr. 129, 97–102 (2017)

    Article  Google Scholar 

  25. Chang, L.; Das, A.; Jeng, M.: An observation of charge trapping phenomena in GaN/AlGaN/Gd2O3/Ni – Au structure An observation of charge trapping phenomena in GaN/AlGaN/Gd2O3/Ni – Au. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3596382

    Article  Google Scholar 

  26. Pandya, R.J.; Joshi, U.S.; Caltun, O.F.: Microstructural and electrical properties of barium strontium titanate and nickel zinc ferrite composites. Procedia Mater. Sci. 10, 168–175 (2015). https://doi.org/10.1016/j.mspro.2015.06.038

    Article  Google Scholar 

  27. Astafiev, K.F., et al.: Crossover between extrinsic and intrinsic dielectric loss mechanisms in SrTiO3 thin films at microwave frequencies. Appl. Phys. Lett. 84(3), 2385–2387 (2005). https://doi.org/10.1063/1.1690878

    Article  Google Scholar 

  28. M. Iwamoto: Maxwell – Wagner Effect. Pp. 1–13, 2015, doi: https://doi.org/10.1007/978-94-007-6178-0

  29. Lee, S.; Moon, S.E.: Low-frequency dielectric responses of barium strontium titanate thin films with conducting perovskite LaNiO3 electrode low-frequency dielectric responses of barium strontium titanate thin films. Jpn. J. Appl. Phys. (2015). https://doi.org/10.1143/JJAP.41.4597

    Article  Google Scholar 

  30. Prodromakis, T.; Papavassiliou, C.: Engineering the Maxwell – Wagner polarization effect. Appl. Surf. Sci. 255, 6989–6994 (2009). https://doi.org/10.1016/j.apsusc.2009.03.030

    Article  Google Scholar 

  31. Zhao, L., et al.: Giant dielectric phenomenon of Ba0.5Sr0.5TiO3/CaCu3Ti4O12 multilayers due to interfacial polarization for capacitor applications. J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.11.039

    Article  Google Scholar 

  32. Panda, B., et al.: Relationship between plasma parameters and film microstructure in radio frequency magnetron sputter deposition of barium strontium titanate. J. Appl. Phys. 83(2), 1114–1119 (1998). https://doi.org/10.1063/1.366802

    Article  Google Scholar 

  33. Roy, D.; Krupanidhia, S.B.: Excimer laser ablated barium strontium random access memory applications titanate thin films for dynamic. Appl. Phys. Lett. 1056, 22–25 (1993). https://doi.org/10.1063/1.108793

    Article  Google Scholar 

  34. L. N. Ismail et al., Capacitance-voltage hysteresis of MIS device with PMMA: TiO2 nanocomposite as gate dielectric. In: RSM 2013 IEEE regional symposium on micro and nanoelectronics, IEEE. pp. 289–292, (2013)

  35. Jamal, A.S.Z.A.Z.: Effect of the chemical composition at the memory behavior of Al/BST/SiO2/Si-gate-FET structure. Appl. Nanosci. 1(3), 157–162 (2011). https://doi.org/10.1007/s13204-011-0024-1

    Article  Google Scholar 

  36. Wang, T., et al.: Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5. J. Appl. Phys. 121(8), 84103 (2017). https://doi.org/10.1063/1.4977107

    Article  Google Scholar 

  37. Balachandran, R.; Ong, B.H.; Wong, H.Y.; Tan, K.B.; Rasat, M.M.: Dielectric characteristics of barium strontium titanate based metal insulator metal capacitor for dynamic random access memory cell. Int. J. Electrochem. Sci. 7, 11895–11903 (2012)

    Google Scholar 

  38. Taylor, P.; Nedelcu, L.; Toacsan, M.I.; Banciu, M.G.; Ioachim, A.: Ferroelectrics dielectric properties of paraelectric Ba 1–x Sr x TiO 3 ceramics. Ferroelectrics 391, 37–41 (2009). https://doi.org/10.1080/00150190903001086

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kaleli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The data that support the results of this paper are available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, B.M., Kaleli, M. Ag/BST/p-Si MFS Device Production and Characterization. Arab J Sci Eng 47, 7797–7806 (2022). https://doi.org/10.1007/s13369-022-06676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06676-x

Keywords

Navigation