Skip to main content

Advertisement

Log in

Experimental Studies of f-CNT Nanofluids in a Helical Coil Heat Exchanger

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hydrodynamic and heat transfer characteristics of long-term stable nanofluids are very crucial for their industrial applications. Also utilization of coils is beneficial for industries as it provides a high rate of heat transfer and is compact in size too. So, the main focus of this study is to investigate the hydrodynamic and heat transfer characteristics of long-term stable f-CNT nanofluids when flowing inside a coil-based heat exchanger. f-CNT nanofluids were prepared by utilizing modified two-step method. To analyze the effect of different parameters on hydrodynamic and convective heat transfer characteristics, f-CNT concentration, \( {\varvec{D}}_{{\mathbf{c}}}\), and Re were varied from 0 to 0.048 vol%, 95 to 175 mm, and 2300 to 9500, respectively. According to results, f-CNT concentration, \( {\varvec{D}}_{{\mathbf{c}}}\), and Re substantially influenced the hydrodynamic and heat transfer characteristics of f-CNT nanofluids. It was found that improvement in h (152%) was much higher than the enhancement in friction factor (49%) when f-CNT nanofluid at 0.048 vol% was flowing through the coil of 95 mm diameter. Based on the heat transfer and hydrodynamic data, performance index was evaluated. The maximum performance index was calculated ⁓ 2.5, suggesting that the utilization of helical coils and f-CNT nanofluids is an excellent choice in industrial applications. Based on the experimental data, empirical correlations have been proposed to calculate the friction factor and Nusselt number for f-CNT nanofluids when flowing inside coils of different diameters and at different f-CNT concentrations. The proposed correlations explain the present experimental data within ± 15% and ± 20%, for friction factor and Nu, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A, A i :

Inside heat transfer area, m2

A o :

Outside heat transfer area, m2

CNT:

Carbon nanotubes

\(C_{{p,\;{\text{f - CNT}}\;{\text{nanofluid}}}}\) :

Specific heat of f-CNT nanofluid, J/g.°C

\(C_{{p,\;{\text{Water}}}}\) :

Specific heat of water, J/g.°C

\(C_{{p,\;{\text{f - CNT}}}}\) :

Specific heat of f-CNT, J/g.°C

C :

Constant

\(D_{{\text{c}}}\) :

Diameter of helical coil, mm

\(d_{{\text{t}}}\) :

Inside diameter of the tube, mm

\(d_{{\text{t}}} /D_{{\text{c}}}\) :

Curvature ratio, dimensionless

\(d_{{\text{o}}}\) :

Outside diameter of the tube, mm

f-CNT:

–COOH functionalized carbon nanotubes

\(f_{{\text{s}}}\), \(f_{{\text{c}}}\) :

Friction factor of straight tube and helical coil, dimensionless

\(f_{{{\text{c }}\left( {{\text{cal}}} \right)}}\) :

Calculated friction factor of helical coil, dimensionless

\(f_{{{\text{c}} \left( {{\text{exp}}} \right)}}\) :

Experimental friction factor of helical coil, dimensionless

h :

Convective heat transfer coefficient of water or CNT nanofluids, W/m2.K

\(h_{{\text{i}}}\) :

Tube side convective heat transfer coefficient, W/m2.K

\(h_{{\text{o}}}\) :

Bath or shell side convective heat transfer coefficient, W/m2.K

hr:

Hour

ID:

Inside diameter of CNT, nm

k w :

Thermal conductivity of copper tube, W/mK

K :

Thermal conductivity of water or CNT nanofluids, W/mK

\(k_{{{\text{CNT}}\;{\text{nanofluid}}}}\) :

Thermal conductivity, W/m.K

\(k_{{\text{f}}}\) :

Thermal conductivity of fluid (water), W/m.K

\(L_{{\text{c}}}\) :

Length of the helical coil, m

L :

Length of CNT, µm

\(\dot{m}_{{\text{c}}}\) :

Mass flow rate of coolant, kg/s

n :

Exponent

N :

Number of turns in helical coil

Nu :

Nusselt number

Pr :

Prandtl number

P :

Helical coil pitch, m

ΔP :

Pressure drop, N/m2 or Pa

\({\text{d}}P/L_{{\text{c}}}\) :

Pressure drop per unit length, Pa/m

\(\dot{Q}_{{\text{c}}}\) :

Heat flow of coolant, W

Re :

Reynolds number

\( {Re}_{{\text{c}}}\) :

Critical Reynolds number, dimensionless

\(\Delta T_{{{\text{lmtd}}}}\) :

Logarithmic mean temperature difference, °C

\(T_{{{\text{bath}}}}\) :

Hot water bath temperature, °C

\(T_{{{\text{out}}}}\) :

Outlet temperature, °C

\(T_{{{\text{in}}}}\) :

Inlet temperature, °C

\(T_{{\text{b, in}}}\) :

Bulk fluid temperature at inlet, °C

\(T_{{\text{b, in}}}\) :

Bulk fluid temperature at outlet, °C

\(U_{i}\) :

Overall heat transfer coefficient, W/m2.K

\(\dot{V}\) :

Volumetric flow rate, m3/sec

\(v,v_{i}\) :

Velocity of water or CNT nanofluids, m/s

\(\rho_{{{\text{water}}}}\) :

Density of water

\(\rho_{{\text{f - CNT}}}\) :

Density of f-CNT

\(\rho_{{{\text{f - CNT}}\;{\text{nanofluid}}}}\) :

Density of f-CNT nanofluid

\(\varphi\) :

Volumetric fraction, vol%

µ :

Viscosity of water or CNT nanofluids, kg/m.s

\(\mu_{{\text{f}}}\) :

Viscosity of base fluid (water), kg/m.s

\(\mu_{{{\text{nf}}}}\) :

Viscosity of nanofluid, kg/m.s

Reference

  1. Yang, L.; Ji, W.; Mao, M.; Huang, J.: Dynamic stability, sedimentation, and time-dependent heat transfer characteristics of TiO2 and CNT nanofluids. J. Therm. Anal. Calorim. 141, 1183–1195 (2019)

    Article  Google Scholar 

  2. Singh, K.; Sharma, S.K.; Gupta S.M.: An experimental investigation of hydrodynamic and heat transfer characteristics of surfactant-water solution and CNT nanofluid in a helical coil-based heat exchanger. Mater. Today: Proc. (2020)

  3. Behabadi, M.A.A.; Pakdaman, M.K.; Ghazvini, M.: Experimental investigation on the convective heat transfer of nanofluid flow insidevertical helically coiled tubes under uniform wall temperature condition. Int. Commun. Heat Mass 39, 556–564 (2012)

    Article  Google Scholar 

  4. Sahin, B.; Manay, E.; Akyurek, E.F.: An experimental study on heat transfer and pressure drop of CuO-water nanofluid. J. Nanomater. 2015, 1–10 (2015)

    Article  Google Scholar 

  5. Babita, S.K.; Sharma, S.M.; Shipra, J.: Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp. Therm. Fluid Sci. 79, 202–212 (2016)

    Article  Google Scholar 

  6. Sharma, B.; Sharma, S.K.; Gupta, S.M.; Kumar, A.: Modified two-step method to prepare long-term stable CNT nanofluids for heat transfer applications. AJSE 43, 6155–6163 (2018)

    Google Scholar 

  7. Hosseinalipour, S.M.; Mashaei, P.R.; Esmailpour, K.: Heat transfer enhancement using nanofluids in laminar impinging jet flows. In: 13th Annual & 2nd International Fluid Dynamics Conference, Shiraz Iran (2010)

  8. Gupta, R.; Wanchoo, R.K.; Ali, T.R.M.J.: Laminar flow in helical coils: a parametric study. Ind. Eng. Chem. Res. 50, 1150–1157 (2011)

    Article  Google Scholar 

  9. Akbaridoust, F.; Rakhsha, M.; Abbassi, A.; Saffar-Avval, M.: Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int. J. Heat Mass Trans. 58, 480–491 (2013)

    Article  Google Scholar 

  10. Seyyedvalilu, M.H.; Ranjbar, S.F.: The effect of geometrical parameters on heat transfer and hydro dynamical characteristics of helical exchanger. Int. J. Recent Adv. Mech. Eng. 4(1), 35–46 (2015)

    Article  Google Scholar 

  11. Ding, Y.; Alias, H.; Wen, D.; Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Trans. 49, 240–250 (2006)

    Article  Google Scholar 

  12. Rea, U.; McKrell, T.; Hu, L.; Buongiorno, J.: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int. J. Heat Mass Trans. 52, 2042–2048 (2009)

    Article  Google Scholar 

  13. Albadr, J.; Tayal, S.; Alasadi, M.: Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud. Therm. Eng. 1, 38–44 (2013)

    Article  Google Scholar 

  14. Esfe, M.Z.H.; Saedodin, S.; Mahian, O.; Wongwises, S.: Thermo-physical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int. Commun. Heat Mass Trans. 58, 176–183 (2014)

    Article  Google Scholar 

  15. Halelfadl, S.; Mare, T.; Estelle, P.: Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 53, 104–110 (2014)

    Article  Google Scholar 

  16. Walvekar, R.; Siddiqui, M.K.; Ong, S.S.; Ismail, A.F.: Application of CNT nanofluids in a turbulent flow heat exchanger. J. Exp. Nanosci. 10(1), 1–17 (2015)

    Article  Google Scholar 

  17. Singh, R.N.; Rajat, P.; Lav, I.; Pandey, P.K.: Experimental studies of nanofluid TiO2/CuO in a heat exchanger (double pipe). Ind. J. Sci. Technol. 9(31), 1–6 (2016)

    Google Scholar 

  18. Ahammed, N.; Asivatham, L.G.; Wongwises, S.: Thermoelectronic cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Exp. Therm. Fluid Sci. 74, 81–90 (2016)

    Article  Google Scholar 

  19. Akbaridoust, F.; Rakhsha, M.; Avval, A.A.M.S.: Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int. J. Heat Mass Trans. 58, 480–491 (2013)

    Article  Google Scholar 

  20. Kahani, M.; Heris, S.Z.; Mousavi, S.M.: Effects of curvature ratio and coil pitch spacing on heat transfer performance of Al2O3/Water nanofluid laminar flow through helical coils. J. Disper. Sci. Technol. 34, 1703–1712 (2013)

    Article  Google Scholar 

  21. Pakdaman, M.F.; Behabadi, M.A.A.; Razi, P.: An empirical study on the pressure drop characteristics of nanofluid flow inside helically coiled tubes. Int. J. Therm. Sci. 65, 206–213 (2013)

    Article  Google Scholar 

  22. Sharma, P.; Gupta, R.; Wanchoo, R.K.: Hydrodynamics studies on glycol based Al2O3 nanofluid flowing through straight tubes and coils. Exp. Therm. Fluid Sci. 82, 19–31 (2017)

    Article  Google Scholar 

  23. Sharma, B.; Sharma, S.K.; Gupta, S.M.: Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger. Mat. Res. Exp. 4(1), 124002 (2017)

    Google Scholar 

  24. Seyyedvalilu, M.H.; Ranjbar, S.F.: The effect of geometrical parameters on heat transfer and hydro dynamical characteristics of helical exchanger. IJMECH 4(1), 35–46 (2015)

    Article  Google Scholar 

  25. Khairul, M.A.; Saidur, R.; Hossain, A.; Alim, M.A.; Mahbubul, I.M.: Heat transfer performance of different nanofluids flows in a helically coiled heat exchanger. Adv. Mat. Res. 832, 160–165 (2014)

    Google Scholar 

  26. Lamas, B.; Abreu, B.; Fonseca, A.; Martins, N.; Oliveira, M.: Assessing colloidal stability of long term MWCNT based nanofluids. J. Colloid Interface Sci. 381, 17–23 (2012)

    Article  Google Scholar 

  27. Kun, Y.; Li, Y.Z.; Feng, J.Q.; Liang, Y.R.; Wei, J.; Hui, L.D.: Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: the role of sonication energy. Chin. Sci. Bull. 58(17), 2082–2090 (2013)

    Article  Google Scholar 

  28. Babita; Sharma, S.K.; Gupta, S.M.: Experimental studies on pressure drop/friction factor of CNT nanofluids flowing through helical coils and development of a new empirical correlation. J. Dispers. Sci. Technol. 41, 607–617 (2019)

    Article  Google Scholar 

  29. Salimpour, M.R.: Heat transfer coefficients of shell and coiled tube heat exchangers. Exp. Therm. Fluid Sci. 33, 203–207 (2009)

    Article  Google Scholar 

  30. Srinivasan, P.S.; Nandapurkar, S.S.; Holland, F.A.: Pressure drop and heat transfer in coils. Chem. Eng. 218, 113–119 (1968)

    Google Scholar 

  31. Ito, H.: Friction factors for turbulent flow in curved pipes. J. Basic Eng. Trans. ASME 81, 123–134 (1959)

    Article  Google Scholar 

  32. Kubair, V.; Varrier, C.B.S.: Pressure drop for liquid flow in helical coils. Trans. Indian Inst. Chem. Eng. 14 (1961, 1962)

  33. Merkel, F.; Die, W.: Grundlagen der. Springer Publishing Company, Berlin (1927)

    Google Scholar 

  34. Rogers, G.F.C.; Mayhew, Y.: Heat transfer and pressure loss in helically coiled tubes with turbulent flow. Int. J. Heat Mass Trans. 7, 1207–1216 (1964)

    Article  Google Scholar 

  35. Mori, Y.; Nakayama, W.: Study on forced convective heat transfer in curved tubes. Int. J. Heat Mass Trans. 10, 37–59 (1967)

    Article  Google Scholar 

  36. Xin, R.C.; Ebadian, M.A.: The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. J. Heat Trans. 119, 467 (1997)

    Article  Google Scholar 

  37. Seban, R.A.; McLaughlin, E.F.: Heat transfer in tube coils with laminar and turbulent flow. Int. J. Heat Mass Trans. 6, 387–395 (1963)

    Article  Google Scholar 

  38. Dravid, A.N.; Smith, K.A.; Merrill, E.W.; Blian, P.L.T.: Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes. AIChEJ 17(4), 1114–1122 (1971)

    Article  Google Scholar 

  39. Kalb, C.E.; Seader, J.D.: Fully developed viscous flow heat transfer in curved circular tubes with uniform wall temperature. AIChE J. 20, 340–346 (1974)

    Article  Google Scholar 

  40. Prasher, R.; Song, D.; Wang, J.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89(133108), 1–3 (2006)

    Google Scholar 

  41. Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phy. Rev. 76(6), 1–16 (2007)

    Google Scholar 

  42. Ravikanth, S.V.; Das, D.K.; Kulkarni, D.P.: Development of new correlations for convective heat transfer and friction factor in turbulent regime for nano-fluids. Int. J. Heat Mass Trans. 53, 4607–4618 (2010)

    Article  Google Scholar 

  43. Guangbin, Y.; Dejun, G.; Juhui, C.; Bing, D.; Di, L.; Ye, S.; Xi, C.: Experimental research on heat transfer characteristics of CuO nanofluid in adiabatic condition. J. Nanomater. 2016, 3693249 (2016)

    Article  Google Scholar 

  44. Ahammed, N.; Asirvatham, L.G.; Wongwises, S.: Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Exp. Therm. Fluid Sci. 74, 81–90 (2016)

    Article  Google Scholar 

  45. Prabhanjan, D.G.; Ragbavan, G.S.V.; Kennic, T.J.: Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. Int. Comm. Heat Mass Trans. 29(2), 185–191 (2002)

    Article  Google Scholar 

  46. Jong, Y.G.; Hoon-Ki, C.; Wa-Ryong, D.: Fluid flow and heat transfer characteristics of spiral coiled tube: effects of Reynolds number and curvature ratio. J. Cent. South Univ. 19, 471–476 (2012)

    Article  Google Scholar 

  47. Srinivas, V.; Moorthy, V.K.N.S.N.; Dedeepya, V.; Manikanta, P.V.; Satish, V.: Nanofluids with CNTs for automotive applications. Heat Mass Trans. 52, 701–712 (2016)

    Article  Google Scholar 

  48. Gajendiran, M.; Saravanakumar, E.; Raj, N.M.; Nallusamy, N.: Heat transfer enhancement of thermic fluid by using nanofluids in radiator. J. Chem. Pharm. Res. 8(3), 686–692 (2016)

    Google Scholar 

  49. Sahin, B.; Manay, F.; Akyurek, E.F.: An experimental study on heat transfer and pressure drop of CuO-water nanofluid. J. Nanomater. (2015)

  50. Xuan, Y.; Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Article  Google Scholar 

  51. Singh, R.N.; Rajat, P.; Lav, I.; Pandey, P.K.: Experimental studies of nanofluid TiO2/CuO in a heat exchanger (double pipe). Indian J. Sci. Technol. 9(31) (2016)

  52. Ghahdarijani, A.M.; Hormozi, F.; Asl, A.H.: Application of nano-fluids to heat transfer enhancement in double-walled reactor. J. Chem. Eng. Process Technol. 7(3), 1–8 (2016)

    Article  Google Scholar 

  53. Pakdaman, M.F.; Akhavan-Behabadi, M.A.; Razi, P.: An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp. Therm. Fluid Sci. 40, 103–111 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by GGSIP University, New Delhi, India, under FRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Sharma, S.K. & Gupta, S.M. Experimental Studies of f-CNT Nanofluids in a Helical Coil Heat Exchanger. Arab J Sci Eng 47, 5821–5840 (2022). https://doi.org/10.1007/s13369-021-05573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05573-z

Keywords

Navigation