Skip to main content

Advertisement

Log in

EELTM: An Energy Efficient LifeTime Maximization Approach for WSN by PSO and Fuzzy-Based Unequal Clustering

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Wireless Sensor Network (WSN) personifies vital and active functions in multi-disciplinary research sectors, as it can deploy in harsh and antagonistic atmospheres where the deployment of a wired system is not possible. However, designing an energy efficient and durable WSN is still a key challenge. Though the contribution of the clustering mechanism attempts to augment the network LifeTime, the energy consumption in the Cluster Heads (CHs) is rapidly high. This led to the frequent change of CHs and minimized the network’s lifetime. To diminish these issues, we propose an Energy Efficient LifeTime Maximization (EELTM) approach which utilizes the intelligent techniques Particle Swarm Optimization (PSO) and Fuzzy Inference System (FIS). Further, we propose an optimal CH–CR selection algorithm in our approach which exploits the fitness values calculated by the PSO technique to determine two optimal nodes in each cluster to act as CH and Cluster Router (CR). The selected CH exclusively gathers the information from its cluster members, whereas the CR is liable for receiving the gathered information from its CH and transferring it to the BS. Thus, the overhead of CH is reduced. Another intelligent technique is that FIS figures out the radius for each CH, and thereby it partitions the network into unequal clusters. The performance of our proposed EELTM approach is analyzed, and evaluations are elaborated with well-known existing clustering algorithms. To assess the proficiency of EELTM and to evaluate the endurance of the network, efficiency parameters such as total-remaining-energy, first-node-expires and fifty-percent-expires are exploited. The experimental outcomes justify that the EELTM approach surpasses the existing mechanisms by 14%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yick, J.; Mukherjee, B.; Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Google Scholar 

  2. Hodge, V.J.; O’Keefe, S.; Weeks, M.; Moulds, A.: Wireless sensor networks for condition monitoring in the railway industry: a survey. IEEE Trans. Intell. Transp. Syst. 16(3), 1088–1106 (2015)

    Google Scholar 

  3. Arikumar, K. S.; Thirumoorthy, K.: Improved user authentication in wireless sensor networks. In: 2011 International Conference on Emerging Trends in Electrical and Computer Technology, pp. 1010–1015. IEEE (2011)

  4. Arikumar, K.S.; Natarajan, V.: Fuzzy based dynamic clustering in wireless sensor networks. In: 2016 8th International Conference on Advanced Computing (ICoAC), pp. 77–82. IEEE (2017)

  5. Rajesh, G.; Vinayagasundaram, B.; Moorthy, G.S.: Data fusion in wireless sensor network using simpson’s 3/8 rule. In: 2014 International Conference on Recent Trends in Information Technology, pp. 1–5. IEEE (2014)

  6. Dondi, D.; Scorcioni, S.; Bertacchini, A.; Larcher, L.; Pavan, P.: An autonomous wireless sensor network device powered by a rf energy harvesting system. In: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 2557–2562. IEEE (2012)

  7. Rajesh, G.; Sundaram, B.V.; Aarthi, C.: Tree based data aggregation to resolve funneling effect in wireless sensor network. Int. J. Comput. Inf. Eng. 9(3), 860–865 (2015)

    Google Scholar 

  8. Sohrabi, K.; Gao, J.; Ailawadhi, V.; Pottie, G.J.: Protocols for self-organization of a wireless sensor network. IEEE Personal Commun. 7(5), 16–27 (2000)

    Google Scholar 

  9. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000, p. 10. IEEE (2000)

  10. Rajesh, G.; Raajini, X.M.; Vinayagasundaram, B.: Fuzzy trust-based aggregator sensor node election in internet of things. Int. J. Internet Protocol Technol. 9(2–3), 151–160 (2016)

    Google Scholar 

  11. Farooq, M.O.; Dogar, A.B.; Shah, G.A.: Mr-leach: Multi-hop routing with low energy adaptive clustering hierarchy. In: 2010 4th International Conference on Sensor Technologies and Applications, pp. 262–268. IEEE (2010)

  12. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Google Scholar 

  13. Arikumar, K.S.; Natarajan, V.; Clarence, L.S.; Priyanka, M.: Efficient fuzzy logic based data fusion in wireless sensor networks. In: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), pp. 1–6. IEEE (2016)

  14. Tunca, C.; Isik, S.; Donmez, M.Y.; Ersoy, C.: Ring routing: an energy-efficient routing protocol for wireless sensor networks with a mobile sink. IEEE Trans. Mobile Comput. 14(9), 1947–1960 (2015)

    Google Scholar 

  15. Singh, S.K.; Singh, M.; Singh, D.: A survey of energy-efficient hierarchical cluster-based routing in wireless sensor networks. Int. J. Adv. Network. Appl. (IJANA) 2(02), 570–580 (2010)

    Google Scholar 

  16. Katiyar, V.; Chand, N.; Soni, S.: Clustering algorithms for heterogeneous wireless sensor network: a survey. Int. J. Appl. Eng. Res. 1(2), 273 (2010)

    Google Scholar 

  17. Soro, S.; Heinzelman, W.B.: Prolonging the lifetime of wireless sensor networks via unequal clustering. In: Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International, p. 8. IEEE (2005)

  18. Kumar, V.; Jain, S.; Tiwari, S.: Energy efficient clustering algorithms in wireless sensor networks: A survey. Int. J. Comput. Sci. Issues (IJCSI) 8(5), 259 (2011)

    Google Scholar 

  19. Javaid, N.; Mohammad, S.N.; Latif, K.; Qasim, U.; Khan, Z.A.; Khan, M.A.: Heer: Hybrid energy efficient reactive protocol for wireless sensor networks. In: 2013 Saudi International Electronics, Communications and Photonics Conference (SIECPC), pp. 1–4. IEEE (2013)

  20. Dorigo, M.; Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Google Scholar 

  21. Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H.-J.: An empower hamilton loop based data collection algorithm with mobile agent for wsns. Human Centric Comput. Inf. Sci. 9(1), 1–14 (2019)

    Google Scholar 

  22. Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.-J.: An enhanced pegasis algorithm with mobile sink support for wireless sensor networks. Wirel. Commun. Mobile Comput. 2018, (2018)

  23. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J.: An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks. Int. J. Distrib. Sensor Netw. 15(3), 1550147719839581 (2019)

    Google Scholar 

  24. Ni, Q.; Pan, Q.; Du, H.; Cao, C.; Zhai, Y.: A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 76–84 (2015)

    Google Scholar 

  25. Ari, A.A.A.; Damakoa, I.; Gueroui, A.; Titouna, C.; Labraoui, N.; Kaladzavi, G.; Yenké, B.O.: Bacterial foraging optimization scheme for mobile sensing in wireless sensor networks. Int. J. Wirel. Inf. Netw. 24(3), 254–267 (2017)

    Google Scholar 

  26. Ari, A.A.A.; Labraoui, N.; Yenké, B.O.; Gueroui, A.: Clustering algorithm for wireless sensor networks: the honeybee swarms nest-sites selection process based approach. Int. J. Sensor Netw. 27(1), 1–13 (2018)

    Google Scholar 

  27. Kuila, P.; Jana, P.K.: Energy efficient clustering and routing algorithms for wireless sensor networks: particle swarm optimization approach. Eng. Appl. Artif. Intell. 33, 127–140 (2014)

    Google Scholar 

  28. Azharuddin, M.; Jana, P.K.: Particle swarm optimization for maximizing lifetime of wireless sensor networks. Comput. Electr. Eng. 51, 26–42 (2016)

    Google Scholar 

  29. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J.: An improved routing schema with special clustering using pso algorithm for heterogeneous wireless sensor network. Sensors 19(3), 671 (2019)

    Google Scholar 

  30. Alizadeh, M.; Fotoohi, E.; Roshanaei, V.; Safavieh, E.: Clustering based fuzzy particle swarm optimization. In: NAFIPS 2009-2009 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6. IEEE (2009)

  31. Wang, J.; Ju, C.; Gao, Y.; Sangaiah, A.K.; Kim, G.-J.: A PSO based energy efficient coverage control algorithm for wireless sensor networks. Comput. Mater. Contin 56(3), 433–446 (2018)

    Google Scholar 

  32. Elhabyan, R.S.; Yagoub, M.C.: Two-tier particle swarm optimization protocol for clustering and routing in wireless sensor network. J. Netw. Comput. Appl. 52, 116–128 (2015)

    Google Scholar 

  33. Zhou, Y.; Wang, N.; Xiang, W.: Clustering hierarchy protocol in wireless sensor networks using an improved pso algorithm. IEEE Access 5, 2241–2253 (2016)

    Google Scholar 

  34. Wang, J.; Gao, Y.; Zhou, C.; Sherratt, S.; Wang, L.: Optimal coverage multi-path scheduling scheme with multiple mobile sinks for wsns. Comput. Mater. Continua 62(2), 695–711 (2020)

    Google Scholar 

  35. Hacioglu, G.; Kand, V.F.A.; Sesli, E.: Multi objective clustering for wireless sensor networks. Expert Syst. Appl. 59, 86–100 (2016)

    Google Scholar 

  36. Shokouhifar, M.; Hassanzadeh, A.: An energy efficient routing protocol in wireless sensor networks using genetic algorithm. Adv. Environ. Biol. 8(21), 86–93 (2014)

    Google Scholar 

  37. Kaushik, A.; Goswami, M.; Manuja, M.; Indu, S.; Gupta, D.: A binary PSO approach for improving the performance of wireless sensor networks. In: Wireless Personal Communications, pp. 1–35 (2020)

  38. Silva Filho, T .M.; Pimentel, B .A.; Souza, R .M.; Oliveira, A .L.: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Expert Syst. Appl. 42(17–18), 6315–6328 (2015)

    Google Scholar 

  39. Hamidouche, R.; Aliouat, Z.; Ari, A.A.A.; Gueroui, M.: An efficient clustering strategy avoiding buffer overflow in iot sensors: a bio-inspired based approach. IEEE Access 7, 156733–156751 (2019)

    Google Scholar 

  40. Ari, A.A.A.; Yenke, B.O.; Labraoui, N.; Damakoa, I.; Gueroui, A.: A power efficient cluster-based routing algorithm for wireless sensor networks: honeybees swarm intelligence based approach. J. Netw. Comput. Appl. 69, 77–97 (2016)

    Google Scholar 

  41. Nayak, P.; Devulapalli, A.: A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime. IEEE Sens. J. 16(1), 137–144 (2015)

    Google Scholar 

  42. Bagci, H.; Yazici, A.: An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Appl. Soft Comput. 13(4), 1741–1749 (2013)

    Google Scholar 

  43. Li, C.; Ye, M.; Chen, G.; Wu, J.: An energy-efficient unequal clustering mechanism for wireless sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, 2005, p. 8. IEEE (2005)

  44. Zahedi, Z.M.; Akbari, R.; Shokouhifar, M.; Safaei, F.; Jalali, A.: Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks. Expert Syst. Appl. 55, 313–328 (2016)

    Google Scholar 

  45. Baranidharan, B.; Santhi, B.: Ducf: Distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Appl. Soft Comput. 40, 495–506 (2016)

    Google Scholar 

  46. Sert, S.A.; Bagci, H.; Yazici, A.: Mofca: multi-objective fuzzy clustering algorithm for wireless sensor networks. Appl. Soft Comput. 30, 151–165 (2015)

    Google Scholar 

  47. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Google Scholar 

  48. Singh, M.; Soni, S.; Kumar, V. et al.: Clustering using fuzzy logic in wireless sensor networks. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1669–1674. IEEE (2016)

  49. Logambigai, R.; Kannan, A.: Fuzzy logic based unequal clustering for wireless sensor networks. Wirel. Netw. 22(3), 945–957 (2016)

    Google Scholar 

  50. Mao, S.; Zhao, C.; Zhou, Z.; Ye, Y.: An improved fuzzy unequal clustering algorithm for wireless sensor network. Mobile Netw. Appl. 18(2), 206–214 (2013)

    Google Scholar 

  51. Gajjar, S.; Sarkar, M.; Dasgupta, K.: Famacrow: fuzzy and ant colony optimization based mac/routing cross-layer protocol for wireless sensor networks. Procedia Comput. Sci. 46, 1014–1021 (2015)

    Google Scholar 

  52. Tam, N.T.; Hai, D.T.; et al.: Improving lifetime and network connections of 3d wireless sensor networks based on fuzzy clustering and particle swarm optimization. Wirel. Netw. 24(5), 1477–1490 (2018)

    Google Scholar 

  53. Bara’a, A.A.; Khalil, E.A.: A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Appl. Soft Comput. 12(7), 1950–1957 (2012)

    Google Scholar 

  54. Poli, R.; Kennedy, J.; Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Google Scholar 

  55. Marini, F.; Walczak, B.: Particle swarm optimization (pso). a tutorial. Chemom. Intell. Lab. Syst. 149, 153–165 (2015)

    Google Scholar 

  56. Das, S.; Abraham, A.; Konar, A.: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. In: Advances of Computational Intelligence in Industrial Systems, pp. 1–38. Springer (2008)

  57. Sun, S.; Kim, K.-Y.; Shin, O.-S.; Shin, Y.: Device-to-device resource allocation in lte-advanced networks by hybrid particle swarm optimization and genetic algorithm. Peer Peer Netw. Appl. 9(5), 945–954 (2016)

    Google Scholar 

  58. Ouyang, H.-B.; Gao, L.-Q.; Li, S.; Kong, X.-Y.: Improved global-best-guided particle swarm optimization with learning operation for global optimization problems. Appl. Soft Comput. 52, 987–1008 (2017)

    Google Scholar 

  59. Marler, R.T.; Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multidiscip. Optim. 41(6), 853–862 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)

    Google Scholar 

  61. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, Hoboken (2005)

    Google Scholar 

  62. Bai, Y.; Wang, D.: Fundamentals of fuzzy logic control—fuzzy sets, fuzzy rules and defuzzifications. In Advanced Fuzzy Logic Technologies in Industrial Applications, pp. 17–36. Springer (2006)

  63. De Silva, C.W.: Intelligent Control: Fuzzy Logic Applications. CRC Press, Boca Raton (2018)

    Google Scholar 

  64. Mylsamy, R.; Sankaranarayanan, S.: A preference-based protocol for trust and head selection for cluster-based manet. Wirel. Personal Commun. 86(3), 1611–1627 (2016)

    Google Scholar 

  65. Zhou, H.-Y.; Luo, D.-Y.; Gao, Y.; Zuo, D.-C.: Modeling of node energy consumption for wireless sensor networks. Wirel. Sensor Netw. 3(1), 18 (2011)

  66. Rault, T.; Bouabdallah, A.; Challal, Y.: Energy efficiency in wireless sensor networks: a top-down survey. Comput. Netw. 67, 104–122 (2014)

    Google Scholar 

  67. Ali, Q.I.; Abdulmaowjod, A.; Mohammed, H.M.: Simulation & performance study of wireless sensor network (WSN) using matlab. In: 2010 1st International Conference on Energy, Power and Control (EPC-IQ), pp. 307–314. IEEE (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Arikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arikumar, K.S., Natarajan, V. & Satapathy, S.C. EELTM: An Energy Efficient LifeTime Maximization Approach for WSN by PSO and Fuzzy-Based Unequal Clustering. Arab J Sci Eng 45, 10245–10260 (2020). https://doi.org/10.1007/s13369-020-04616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04616-1

Keywords

Navigation