Skip to main content

Advertisement

Log in

Glycyrrhizin functionalized CuS Nanoprobes for NIR Light-based therapeutic mitigation of acne vulgaris

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Acne Vulgaris or Acne is a multifactorial bacterial infection caused by Propionibacterium acne, leading to inflammation and decreased quality of life, especially in adolescence. Currently, antibiotics and retinoids are preferred for treating acne. However, their continuous usage may lead to anti-microbial resistance and other side effects. Therefore, research on developing effective strategies to reduce antimicrobial resistance and improve acne healing is ongoing. The current work reports the synthesis and evaluation of near-infrared light-absorbing copper sulfide (CuS) nanoparticles loaded with a biomolecule, Glycyrrhizin (Ga). The photothermal efficacy studies, and in-vitro and in-vivo experiments indicated that the Ga-CuS NPs generated localized hyperthermia in acne-causing bacteria, leading to their complete growth inhibition. The results indicated that the Ga-Cus NPs possess excellent antibacterial and anti-inflammatory properties in the acne and inflammatory models. This could be from the synergistic effect of CuS NPs mediated mild Photothermal effect and inherent pharmacological properties of Ga. Further detailed studies of the formulations can pave the way for application in cosmetic clinics for the effective and minimally invasive management of Acne-like conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Supporting data associated with this work, such as synthetic procedures, and protocols of the spectroscopic, in vitro and in vivo studies, are available and included in the supporting information file.

Availability of data and materials

All data generated or analysed during this study are included in this published article or the Supporting information file.

References

  1. Liu P-F, et al. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris. Curr Drug Metab. 2015;16(4):245–54.

    Article  CAS  PubMed  Google Scholar 

  2. Mahapatra T. Mental health problems of adolescents with acne: a neglected public health issue. Annals Trop Med Public Health. 2016;9(3):143–143.

    Article  Google Scholar 

  3. Holzmann R, Shakery K. Postadolescent acne in females. Skin Pharmacol Physiol. 2014;27(1):3–8.

    Article  PubMed  Google Scholar 

  4. Lukaviciute L, et al. Quality of life, anxiety prevalence, depression symptomatology and suicidal ideation among acne patients in Lithuania. J Eur Acad Dermatol Venereol. 2017;31(11):1900–6.

    Article  CAS  PubMed  Google Scholar 

  5. Xue H, et al. Efficacy and safety of low-dose oral isotretinoin monotherapy versus combined therapy with picosecond laser for the treatment of acne scars in Asian population. Lasers in Surgery and Medicine; 2023.

    Book  Google Scholar 

  6. Makrantonaki E, Ganceviciene R, Zouboulis CC. An update on the role of the sebaceous gland in the pathogenesis of acne. Dermato-Endocrinology. 2011;3(1):41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lugović Mihić L, Mihatović D, Šitum M. Psychoneuroimmunology and skin diseases. Rad Hrvatske akademije znanosti i umjetnosti. Medicinske znanosti. 2019;1(537= 46-47):25–36.

    Google Scholar 

  8. Bhadra P. A literature review onacne due to hormonal changes and lifestyle. Indian J Nat Sci. 2020;10(59):18507–21.

    Google Scholar 

  9. Goldberg D, et al. Selective photothermolysis with a novel 1726 nm laser beam: a safe and effective solution for acne vulgaris. J Cosmet Dermatol. 2023;22(2):486–96.

    Article  PubMed  Google Scholar 

  10. Williams HC, Dellavalle RP, Garner S. Acne Vulgaris. Lancet. 2012;379(9813):361–72.

    Article  PubMed  Google Scholar 

  11. Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics. 2013;3(3):152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J Microbiol Biotechnol. 2021;37:1–30.

    Article  Google Scholar 

  13. Hemmer E, et al. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B. 2017;5(23):4365–92.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, et al. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Controlled Release. 2020;328:251–62.

    Article  CAS  Google Scholar 

  15. Pei S, et al. Light-based therapies in acne treatment. Indian Dermatology Online J. 2015;6(3):145.

    Article  Google Scholar 

  16. Bagatin E, et al. Treatment challenges in adult female acne and future directions. Expert Rev Clin Pharmacol. 2021;14(6):687–701.

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, et al. Recent progress on bioinspired antibacterial surfaces for biomedical application. Biomimetics. 2022;7(3):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi J, et al. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@ Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials. 2014;35(22):5847–61.

    Article  CAS  PubMed  Google Scholar 

  19. Tong F, Wang Y, Gao H. Progress and challenges in the translation of cancer nanomedicines. Curr Opin Biotechnol. 2024;85:103045.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng W et al. An optimal portfolio of photothermal combined immunotherapy. Cell Rep Phys Sci. 2022;100898.

  21. Lu Y-J, Chuang C-C, Chen J-P. Liposomal IR-780 as a highly stable Nanotheranostic Agent for Improved Photothermal/Photodynamic therapy of Brain tumors by Convection-enhanced delivery. Cancers. 2021;13(15):3690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng S, et al. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo. Biomaterials Sci. 2017;5(3):475–84.

    Article  CAS  Google Scholar 

  23. Ermini ML, Voliani V. Antimicrobial nano-agents: the copper age. ACS Nano. 2021;15(4):6008–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan Z, et al. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano. 2020;14(3):3546–62.

    Article  CAS  PubMed  Google Scholar 

  25. Shamraiz U, Hussain RA, Badshah A. Fabrication and applications of copper sulfide (CuS) nanostructures. J Solid State Chem. 2016;238:25–40.

    Article  CAS  Google Scholar 

  26. Kwon Y-T, et al. Effect of localized surface plasmon resonance on dispersion stability of copper sulfide nanoparticles. Appl Surf Sci. 2019;477:204–10.

    Article  CAS  Google Scholar 

  27. Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small. 2014;10(4):631–45.

    Article  CAS  PubMed  Google Scholar 

  28. Nain A, et al. Copper sulfide nanoassemblies for catalytic and photoresponsive eradication of bacteria from infected wounds. ACS Appl Mater Interfaces. 2021;13(7):7865–78.

    Article  CAS  PubMed  Google Scholar 

  29. Wang W, et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020;13:2156–64.

    Article  CAS  Google Scholar 

  30. Huo J, et al. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev. 2021;50(15):8762–89.

    Article  CAS  PubMed  Google Scholar 

  31. Glass GE. Cosmeceuticals: the principles and practice of skin rejuvenation by nonprescription topical therapy. In Aesthetic Surgery Journal Open Forum. US: Oxford University Press; 2020 (Vol. 2), No. 4, p. ojaa038.

  32. Kao T-C, Shyu M-H, Yen G-C. Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. J Agric Food Chem. 2010;58(15):8623–9.

    Article  CAS  PubMed  Google Scholar 

  33. Huo X, et al. Hepatoprotective effect of different combinations of 18α-and 18β-Glycyrrhizic acid against CCl4-induced liver injury in rats. Volume 122. Biomedicine & Pharmacotherapy; 2020. p. 109354.

    Google Scholar 

  34. Ban JY, Park HK, Kim SK. Effect of glycyrrhizic acid on scopolamine-induced cognitive impairment in mice. Int Neurourol J. 2020;24(Suppl 1):S48.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang Y, et al. Natural small molecule self-assembled hydrogel inhibited tumor growth and lung metastasis of 4T1 breast cancer by regulating the CXCL1/2-S100A8/9 axis. Mater Design. 2023;225:111435.

    Article  CAS  Google Scholar 

  36. Gupta M, et al. Herbal bioactives in treatment of inflammation: an overview. South Afr J Bot. 2021;143:205–25.

    Article  CAS  Google Scholar 

  37. Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res. 2019;144:210–26.

    Article  CAS  PubMed  Google Scholar 

  38. Grzelczak M, et al. Steric hindrance induces crosslike self-assembly of gold nanodumbbells. Nano Lett. 2012;12(8):4380–4.

    Article  CAS  PubMed  Google Scholar 

  39. Gayathri R, et al. Doxorubicin loaded polyvinylpyrrolidone-copper sulfide nanoparticles enabling mucoadhesiveness and chemo-photothermal synergism for effective killing of breast cancer cells. Materialia. 2021;19:101195.

    Article  Google Scholar 

  40. Wang C, et al. Fabrication and evaluation of lambda-cyhalothrin nanosuspension by one-step melt emulsification technique. Nanomaterials. 2019;9(2):145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J Controlled Release. 2016;235:337–51.

    Article  CAS  Google Scholar 

  42. Borah P, Baruah DJ, Mridha P, Baishya R, Bora HK, Das MR. Photoenhanced intrinsic peroxidase-like activity of a metal-free biocompatible borophene photonanozyme for colorimetric sensor assay of dopamine biomolecule. Chem Commun. 2024.

  43. Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(4):e1449.

    Article  Google Scholar 

  44. Mehata AK, et al. Chitosan-g-estrone nanoparticles of palbociclib vanished hypoxic breast tumor after targeted delivery: development and ultrasound/photoacoustic imaging. ACS Appl Mater Interfaces. 2023;15(29):34343–59.

    Article  CAS  PubMed  Google Scholar 

  45. Unterweger H, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomed. 2017;12:5223.

    Article  CAS  Google Scholar 

  46. Ghosh A, et al. Bio-nanoconjugates of lithocholic acid/IR 780 for ROS-mediated apoptosis and optoacoustic imaging applications in breast cancer. Colloids Surf B. 2023;221:113023.

    Article  CAS  Google Scholar 

  47. Ahmed KBA, Anbazhagan V. Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Adv. 2017;7(58):36644–52.

    Article  Google Scholar 

  48. Haddad G, et al. A preliminary investigation into bacterial viability using scanning electron microscopy–energy-dispersive X-ray analysis: the case of antibiotics. Front Microbiol. 2022;13:967904.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marzhoseyni Z, Rashki S, Nazari-Alam A. Evaluation of the inhibitory effects of TiO2 nanoparticle and Ganoderma Lucidum extract against biofilm-producing bacteria isolated from clinical samples. Arch Microbiol. 2023;205(2):59.

    Article  CAS  PubMed  Google Scholar 

  50. Jamkhande PG, et al. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2019;53:101174.

    Article  CAS  Google Scholar 

  51. Jena J, et al. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc. 2015;19(6):661–6.

    Article  Google Scholar 

  52. Ma L, et al. Synergistic effect of glycyrrhizic acid and cellulose nanocrystals for oil-water interfacial stabilization. Food Hydrocolloids. 2021;120:106888.

    Article  CAS  Google Scholar 

  53. Hussain S, et al. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Phys Chem Chem Phys. 2018;20(8):5926–35.

    Article  PubMed  Google Scholar 

  54. Karikalan N, et al. Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci Rep. 2017;7(1):2494.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nirmala P, Selvaraj T. Anti-inflammatory and anti-bacterial activities of Glycyrrhiza glabra L. J Agricultural Technol. 2011;7(3):815–23.

    Google Scholar 

  56. Bezza FA, Tichapondwa SM, Chirwa EM. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep. 2020;10(1):16680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding and acknowledgements

The authors would like to thank and acknowledge the Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Department of Biotechnology (BIRAC), Govt. of India, Ministry of development of Northeast Region (DoNER) and DST-TIFAC, Govt. of India for research funding and support. SG & NP would also like to acknowledge the Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. India for the research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SG, NP, and DC were involved in performing experiments, analysing and drafting of the manuscript. DM & SS guided and supported for the antimicrobial studies. DG and MRD supported for the XPS analysis. RD & DS supported for the in-vivo experiments. USNM was involved in the research and administrative support and DBP was involved in ideation, execution and drafting of the manuscript.

Corresponding author

Correspondence to Deepak Bharadwaj Pemmaraju.

Ethics declarations

Ethics approval and consent to participate

“All institutional and national guidelines for the care and use of laboratory animals were followed.” The details are provided in the methods section.

Consent for publication

All the authors have given approval for the final version of the manuscript.

Competing interests

“There are no competing of interests to declare”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 211003 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeshan, S., Parihar, N., Chonzom, D. et al. Glycyrrhizin functionalized CuS Nanoprobes for NIR Light-based therapeutic mitigation of acne vulgaris. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01594-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01594-x

Keywords

Navigation