Skip to main content

Advertisement

Log in

Bone marrow mast cell density correlates with serum levels of VEGF and CXC chemokines ENA-78 and GRO-α in multiple myeloma

  • Research Article
  • Published:
Tumor Biology

Abstract

Angiogenesis is a crucial process in growth and progression of multiple myeloma (MM). Mast cells (MCs) play an important role in MM angiogenesis. Various angiogenic mediators secreted by MCs regulate endothelial cell proliferation and function. Among them, ELR+ CXC chemokines, such as growth-related oncogen-alpha (GRO-α) and epithelial neutrophil activating protein-78 (ENA-78), have been described as potential mediators in regulation of angiogenesis. The purpose of the study was to quantify MCs in bone marrow (BM) biopsies of MM patients, expressed as MC density (MCD), and correlate it with serum concentrations of vascular endothelial factor (VEGF), GRO-α, ENA-78. Fifty-four newly diagnosed MM patients and 22 healthy controls were studied. Tryptase was used for the immunohistochemical stain of MCs. VEGF, GRO-α, and ENA-78 were measured in sera by ELISA. MCD and serum levels of GRO-α, ENA-78, and VEGF were significantly higher in MM patients compared to controls (p < 0.001 in all cases). MCD was significantly increasing with increased stage of the disease (p < 0.001). Furthermore, significant correlations were found between MCD with VEGF, GRO-α, and ENA-78. These findings support that MCs participate in the pathophysiology of MM and is implicated in the angiogenic process and disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kline M, Donovan K, Wellik L, Lust C, Jin W, Moon-Tasson L, et al. Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk Res. 2007;31:591–8.

    Article  CAS  PubMed  Google Scholar 

  2. Pappa CA, Tsirakis G, Kanellou P, Kaparou M, Stratinaki M, Xekalou A, et al. Monitoring serum levels ELR+ CXC chemokines and the relationship between microvessel density and angiogenic growth factors in multiple myeloma. Cytokine. 2011;56:616–20.

    Article  CAS  PubMed  Google Scholar 

  3. Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S. Angiogenesis and multiple myeloma. Cancer Microenviron. 2011;4:325–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Vacca A, Ribatti D. Angiogenesis and vasculogenesis in multiple myeloma: role of inflammatory cells. Recent Results Cancer Res. 2011;183:87–95.

    Article  PubMed  Google Scholar 

  5. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77:1033–79.

    CAS  PubMed  Google Scholar 

  6. Weller CL, Collington SJ, Williams T, Lamb JR. Mast cells in health and disease. Clin Sci (Lond). 2011;120:473–84.

    Article  CAS  Google Scholar 

  7. Weller K, Foitzik K, Paus R, Syska W, Maurer M. Mast cells are required for normal healing of skin wounds in mice. FASEB J. 2006;20:2366–8.

    Article  CAS  PubMed  Google Scholar 

  8. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011;30:45–60.

    Article  CAS  PubMed  Google Scholar 

  9. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory cells up-regualate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13:1382–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gounaris E, Erdman S, Restaino C, et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A. 2007;104:19977–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med. 2007;13:1211–8.

    Article  CAS  PubMed  Google Scholar 

  12. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, et al. Nf1-dependent tumors require a microenvironment containing Nf1 ± and c-kit-dependent bone marrow. Cell. 2008;135:437–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dethlefsen SM, Matsuura N, Zetter BR. Mast cell accumulation at sites of murine tumor implantation: implications for angiogenesis and tumor metastasis. Invasion Metastasis. 1994;14:395–408.

    PubMed  Google Scholar 

  14. Starkey JR, Crowle PK, Taubenberger S. Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer. 1988;42:48–52.

    Article  CAS  PubMed  Google Scholar 

  15. de Souza Jr DA, Toso VD, Campos MR, Lara VS, Oliver C, Jamur MC. Expression of mast cell proteases correlates with mast cell maturation and angiogenesis during tumor progression. PLoS One. 2012;7:e40790.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tomita M, Matsuzaki Y, Onitsuka T. Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg. 2000;69:1686–90.

    Article  CAS  PubMed  Google Scholar 

  17. Jamur MC, Moreno AN, Mello LF, Souza Junior DA, Campos MR, Pastor MV, et al. Mast cell repopulation of the peritoneal cavity. Contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors. BMC Immunol. 2010;11:32.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bellamy WT. Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol. 2001;28:551–9.

    Article  CAS  PubMed  Google Scholar 

  19. Keane MP, Belperio JA, Burdick MD, Lynch JP, Fishbein MC, Strieter RM. ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001;164:2239–42.

    Article  CAS  PubMed  Google Scholar 

  20. Pappa CA, Tsirakis G, Roussou P, Xekalou A, Goulidaki N, Konsolas I, et al. Positive correlation between bone marrow mast cell density and ISS prognostic index in patients with multiple myeloma. Leuk Res. 2013. doi:10.1016/j.leukres.2013.09.012.

    Google Scholar 

  21. Shaughnessy Jr JD, Barlogie B. Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol Rev. 2003;194:140–63.

    Article  CAS  PubMed  Google Scholar 

  22. Vanderkerken K, Asosingh K, Croucher P, Van Camp B. Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev. 2003;194:196–206.

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest. 2004;114:1317–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wasiuk A, Dalton DK, Schpero WL, Stan RV, Conejo-Garcia JR, Noelle RJ. Mast cells impair the development of protective anti-tumor immunity. Cancer Immunol Immunother. 2012;61:2273–82.

    Article  CAS  PubMed  Google Scholar 

  25. Benitez-Bribiesca L, Wong A, Utrera D, Castellanos E. The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J Histochem Cytochem. 2001;49:1061–2.

    Article  CAS  PubMed  Google Scholar 

  26. Nico B, Mangieri D, Crivellato E, Vacca A, Ribatti D. Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev. 2008;17:19–22.

    Article  CAS  PubMed  Google Scholar 

  27. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL. The role of CXC chemokines as regulators of angiogenesis. Shock. 1995;4:155–60.

    Article  CAS  PubMed  Google Scholar 

  28. Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest. 1997;99:2691–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fajardo I, Pejler G. Human mast cell beta-tryptase is a gelatinase. J Immunol. 2003;171:1493–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K, et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol. 2001;66:83–8.

    Article  CAS  PubMed  Google Scholar 

  31. Alexandrakis MG, Passam FH, Boula A, Christophoridou A, Aloizos G, Roussou P, et al. Relationship between circulating serum soluble interleukin-6 receptor and the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in multiple myeloma. Ann Hematol. 2003;82:19–23.

    CAS  PubMed  Google Scholar 

  32. Passam FH, Alexandrakis MG, Kafousi M, Fotinou M, Darivianaki K, Tsirakis G, et al. Histological expression of angiogenic factors: VEGF, PDGFRalpha, and HIF-1alpha in Hodgkin lymphoma. Pathol Res Pract. 2009;205:11–20.

    Article  PubMed  Google Scholar 

  33. Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood. 2005;105:1383–95.

    Article  CAS  PubMed  Google Scholar 

  34. Markovic O, Marisavljevic D, Cemerikic V, Vidovic A, Perunicic M, Todorovic M, et al. Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol. 2008;25:451–7.

    Article  PubMed  Google Scholar 

  35. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348–57.

    Article  CAS  PubMed  Google Scholar 

  36. Pellegrino A, Ria R, Di Pietro G, Cirulli T, Surico G, Pennisi A, et al. Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. Br J Haematol. 2005;129:248–56.

    Article  CAS  PubMed  Google Scholar 

  37. Rubie C, Frick VO, Wagner M, Schuld J, Graber S, Brittner B, et al. ELR+ CXC chemokine expression in benign and malignant colorectal conditions. BMC Cancer. 2008;8:178.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, et al. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer. 2009;125:1027–37.

    Article  CAS  PubMed  Google Scholar 

  39. Frick VO, Rubie C, Wagner M, Graeber S, Grimm H, Kopp B, et al. Enhanced ENA-78 and IL-8 expression in patients with malignant pancreatic diseases. Pancreatology. 2008;8:488–97.

    Article  PubMed  Google Scholar 

  40. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008;267:226–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Alexandrakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappa, C.A., Tsirakis, G., Devetzoglou, M. et al. Bone marrow mast cell density correlates with serum levels of VEGF and CXC chemokines ENA-78 and GRO-α in multiple myeloma. Tumor Biol. 35, 5647–5651 (2014). https://doi.org/10.1007/s13277-014-1747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1747-x

Keywords

Navigation