Skip to main content
Log in

Nanoscale Diesel-Exhaust Particulate Matter (DPM) Impairs Synaptic Plasticity of Human iPSCs-Derived Cerebral Organoids

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Nanoscale diesel-exhaust particulate matter (DPM), a cause of air pollution, has recently become the subject of many studies because it affects human health and causes neural diseases. However, most studies are based on epidemiology, cell, sliced tissue or animal models, and the toxic effects of nanoscale DPM on inducing disease in living human brain remain unclear. In this study, we developed a new in vitro model to investigate the synaptic plasticity impairment of human brain affected by nanoscale DPM using cerebral organoid (CO) mimicking human brain. Nanoscale DPM-exposed COs was observed in the electrophysiological signal-perturbed neuronal network following spike train measured by multi-electrode array. Furthermore, we confirmed a decrease of pre–post synaptic markers, neurotransmitter imbalance and increase of inflammatory markers by immunostaining in nanoscale DPM-exposed COs. This in vitro approach shows nanoscale DPM exposure disturbs synaptic balance in CO, which can contribute to neuronal disease, including developmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babadjouni, R., et al.: Nanoparticulate matter exposure results in neuroinflammatory changes in the corpus callosum. PLoS One 13, e0206934 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bershteyn, M., et al.: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449 (2017). (e434)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bingley, M.S., Harrison, R.M., Wallis, M.: Measurement of number, mass and size distribution of particles in the atmosphere—discussion. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 358, 2579–2580 (2000)

    Google Scholar 

  4. Boj, S.F., et al.: Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Brook, R.D., et al.: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. Calderon-Garciduenas, L., et al.: Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 68, 117–127 (2008)

    Article  PubMed  Google Scholar 

  7. Casanova, R., et al.: A voxel-based morphometry study reveals local brain structural alterations associated with ambient fine particles in older women. Front. Hum. Neurosci. 10, 495 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choi, S.H., et al.: A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274–278 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costa, L.G., et al.: Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 210, 107523 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Prado, B.P., Mercader, E.M.H., Pujol, J., Sunyer, J., Mortamais, M.: The effects of air pollution on the brain: a review of studies interfacing environmental epidemiology and neuroimaging. Curr Environ Health Rep 5, 351–364 (2018)

    Article  Google Scholar 

  11. Eiraku, M., et al.: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. El-Ansary, A., Al-Ayadhi, L.: GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflamm 11, 189 (2014)

    Article  Google Scholar 

  13. Ghio, A.J., Smith, C.B., Madden, M.C.: Diesel exhaust particles and airway inflammation. Curr. Opin. Pulm. Med. 18(2), 144–150 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Harrison, R.M., Yin, J.: Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci. Total Environ. 249, 85–101 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Hennig, A., et al.: CFTR expression analysis for subtyping of human pancreatic cancer organoids (vol 2019, 1024614, 2019). Stem Cells Int. 2019, 1024614 (2019)

    PubMed  PubMed Central  Google Scholar 

  16. Jo, J., et al.: Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kadoshima, T., et al.: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. USA 110, 20284–20289 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, Y.J., Tan, H.Y., Lee, C.Y., Cho, H.: An air particulate pollutant induces neuroinflammation and neurodegeneration in human brain models. Adv. Sci. 8, 2101251 (2021)

    Article  CAS  Google Scholar 

  19. Lancaster, M.A., et al.: Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H.K., et al.: Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS One 11, e0163072 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, X., et al.: Activation of NLRP3 in microglia exacerbates diesel exhaust particles-induced impairment in learning and memory in mice. Environ. Int. 136, 105487 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. McCracken, K.W., et al.: Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mellios, N., et al.: MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol. Psychiatry 23, 1051–1065 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. Morris, R.H., Counsell, S.J., McGonnell, I.M., Thornton, C.: Early life exposure to air pollution impacts neuronal and glial cell function leading to impaired neurodevelopment. BioEssays 43, 2000288 (2021)

    Article  CAS  Google Scholar 

  25. Ovrevik, J., Refsnes, M., Lag, M., Holme, J.A., Schwarze, P., E,: Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 5, 1399–1440 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pasca, A.M., et al.: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasca, S.P.: The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. Qi, C., et al.: Excitatory and inhibitory synaptic imbalance caused by brain-derived neurotrophic factor deficits during development in a valproic acid mouse model of autism. Front. Mol. Neurosci. 15, 860275 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raja, W.K., et al.: Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One 11, e0161969 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Riedl, M., Diaz-Sanchez, D.: Biology of diesel exhaust effects on respiratory function. J. Allergy Clin. Immunol. 115, 221–228 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Roth, S., Fodde, R.: The nature of intestinal stem cells’ nurture. EMBO Rep. 12, 483–484 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sato, T., et al.: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Shi, J.P., Harrison, R.M.: Investigation of ultrafine particle formation during diesel exhaust dilution. Environ. Sci. Technol. 33, 3730–3736 (1999)

    Article  CAS  Google Scholar 

  34. Takasato, M., et al.: Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. van de Wetering, M., et al.: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, H., Doering, L.C.: Autism spectrum disorders: emerging mechanisms and mechanism-based treatment. Front. Cell. Neurosci. 9, 183 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, J., et al.: Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-kappa B signaling pathway. J. Thorac. Dis. 9, 4398–4412 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, E., Lee, J., Kim, E.: Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiat. 81, 838–847 (2017)

    Article  PubMed  Google Scholar 

  39. Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W., Pardo, C.A.: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Qi, C., et al.: Chronic inflammatory pain decreases the glutamate vesicles in presynaptic terminals of the nucleus accumbens. Mol. Pain 14, 1744806918781259 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, P., et al.: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol. Autism 8, 11 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wichmann, H.E.: Diesel exhaust particles. Inhal. Toxicol. 19, 241–244 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. Wilker, E.H., et al.: Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke 46, 1161–1166 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Won, H.R., et al.: Effect of urban particulate matter on vocal fold fibrosis through the MAPK/NF-kappa B signaling pathway. Int. J. Mol. Sci. 21, 6643 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan, Z., et al.: Inflammatory cell signaling following exposures to particulate matter and ozone. BBA Gen. Subj. 1860, 2826–2834 (2016)

    Article  CAS  Google Scholar 

  46. Zheng, X., et al.: Hyperglycemia induced by chronic restraint stress in mice is associated with nucleus tractus solitarius injury and not just the direct effect of glucocorticoids. Front. Neurosci. 12, 983 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jabbar, F., Kim, Y., Lee, S.H.: Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips. BioChip J 16, 305–316 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y., et al.: Study of the neurotoxicity of indoor airborne nanoparticles based on a 3D human blood-brain barrier chip. Environ Int 143, 105598 (2020)

    Article  CAS  PubMed  Google Scholar 

  49. Choi, N.Y., Lee, M., Jeong, S.: Recent advances in 3D-cultured brain tissue models derived from human iPSCs. BioChip J 16, 246–254 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2019R1A2C3002300) and by the National R&D Program through the NRF funded by Ministry of Science and ICT (NRF-2022M3H4A1A01005271), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2022R1I1A1A01069710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Woo Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Sj., Choi, JW. Nanoscale Diesel-Exhaust Particulate Matter (DPM) Impairs Synaptic Plasticity of Human iPSCs-Derived Cerebral Organoids. BioChip J 17, 349–356 (2023). https://doi.org/10.1007/s13206-023-00107-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00107-1

Keywords

Navigation