Skip to main content

Advertisement

Log in

Estimating range disjunction time of the Palearctic Admirals (Limenitis L.) with COI and histone H1 genes

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Three species of the genus Limenitis (Nymphalidae) (L. camilla, L. helmanni, L. sydyi) have split ranges in the Palearctic. Their disjunction was dated either to the Pleistocene or to the Subboreal time of the Holocene. This genus also exhibits an amphiberingean disjunction, L. populi vs four Nearctic species. To evaluate the disjunction time in Eurasia, we analysed a fragment of the mitochondrial COI gene and a major part of the histone H1 gene. The former was sequenced in 51 specimens of three species with Palearctic disjunctions. We detected a diverged nuclear copy of the COI gene in L. camilla. The histone H1 gene was sequenced in 64 specimens of 8 species. In five species, intra-species and intra-individual nucleotide substitutions and variation in the number of intra-genic repeats were observed and studied by cloning of individual gene copies, with individuals found with more than two variants. With 30–80 copies of histone H1 gene in Limenitis genomes, as estimated by real time PCR, this was interpreted as cis-heterogeneity across the histone gene cluster. No fixed differences between the western and eastern range parts were found in L. helmanni, L. camilla and L. sydyi, although in the former more alleles of both sequences were found in the eastern part. This suggests the range disjunctions to be too recent to be dated by molecular means and they may only be estimated to have taken place not more than 77–100 tya. This fits their provisional dating by Dubatolov and Kosterin (Entomologica Fennica 11(3), 141-161, 2000) to the Subboreal time of the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The sequences are submitted to European Nucleotide Archive; the relevant accession numbers are provided in Table 1.

References

  • Arkhipov, S. A., & Volkova, V. S. (1994). Geological history, Pleistocene landscapes and climate in West Siberia. Nauka, in Russian.

  • Babik, W., Branicki, W., Sandera, M., Litvinchuk, S., Borkin, J. J., Irwin, J. T., & Rafinki, J. (2004). Mitochondrial phylogeography of the moor frog. Rana Arvalis. Molecular Ecology, 13(6), 1469–1480. https://doi.org/10.1111/j.1365-294X.2004.02157.x

    Article  PubMed  CAS  Google Scholar 

  • Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). Evolution. 2007. Cold Spring Harbor Laboratory Press.

  • Bartońová, A. S., Konvića, M., Mareŝová, J., Wiemers, M., Ignatev, N., Wahlberg, N., Schmidt, T., & Fric, Z. F. (2021). Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Scientific Reports, 11, 30195. https://doi.org/10.1038/s41598-021-82433-8

    Article  CAS  Google Scholar 

  • Belova, V. A. (1985). Vegetation and climate of the Late Cenozoic of the southern Eastern Siberia. Nauka. in Russian.

    Google Scholar 

  • Belyshev, B. F., & Haritonov, A. Y. (1981). Geography of Odonata of Boreal Faunistic Kingdom. Nauka. in Russian.

    Google Scholar 

  • Bensasson, D., Zhang, D. X., & Hewitt, G. M. (2000). Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Molecular Biology and Evolution, 17(3), 406–415. https://doi.org/10.1093/oxfordjournals.molbev.a026320

    Article  PubMed  CAS  Google Scholar 

  • Bensasson, D., Zhang, D. X., Hartl, D. L., & Hewitt, G. M. (2001). Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends in Ecology & Evolution, 16(6), 314–321. https://doi.org/10.1016/S0169-5347(01)02151-6

    Article  CAS  Google Scholar 

  • Berdnikov, V. A., Rozov, S. M., Temnykh, S. V., & Gorel’, F. L., & Kosterin, O. E. (1993). Adaptive nature of interspecies variation of Histone H1 in insects. Journal of Molecular Evolution, 36(5), 497–507. https://doi.org/10.1007/BF02406725

    Article  CAS  Google Scholar 

  • Berlov, E., & Berlov, O. (2021). 1000 Siberian butterflies and moths. Internet resource, http://catocala.narod.ru. Accessed 21 September 2021.

  • Bernard, R., Heiser, M., Hochkirch, A., & Schmidt, T. (2011). Genetic homogeneity of hedgling Nechalennia speciosa (Odonata: Coenagrionidae) indicates a single Würm glacial refugium and trans-Palearctic postglacial expansion. Journal of Zoological Systematics and Evolutionary Research, 49(4), 292–297. https://doi.org/10.1111/j.1439-0469.2011.00630.x

    Article  Google Scholar 

  • Bouckaert, R. R. (2010). DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics, 26(10), 1372–1373. https://doi.org/10.1093/bioinformatics/btq110

    Article  PubMed  CAS  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brower, A. V. (2006). Problems with DNA barcodes for species delimitation: ‘Ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Systematics and Biodiversity, 4(2), 127–132. https://doi.org/10.1017/S147720000500191X

    Article  Google Scholar 

  • Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proceedings of the National Academy of Sciences USA, 91(14), 6491–6495. https://doi.org/10.1073/pnas.91.14.6491

    Article  CAS  Google Scholar 

  • Cai, Y., Cheng, X. Y., Duan, D. H., & Xu, R. M. (2011). Mitochondrial COI gene transfers to the nuclear genome of Dendroctonus valens and its implications. Journal of Applied Entomology, 135(4), 302–310. https://doi.org/10.1111/j.1439-0418.2010.01545.x

    Article  CAS  Google Scholar 

  • Capblanq, T., Després, L., & Mavares, J. (2020). Genetic, morphological and ecological variation across a sharp hybrid zone between two alpine butterfly species. Evolutionary Applications, 13(6), 1435–1450. https://doi.org/10.1111/eva.12925

    Article  CAS  Google Scholar 

  • Caterino, T. L., & Hayes, J. J. (2011). Structure of the H1 C-terminal domain and function in chromatin condensation. Biochemistry and Cell Biology, 89(1), 35–44. https://doi.org/10.1139/O10-024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sinauer Associates.

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lattin, G. D. (1967). Grundriss der zoogeographie. Verlag Fischer.

    Google Scholar 

  • Descimon, H., & Mallet, J. (2009). Bad species. In J. Settele, M. Konvicka, T. Shreeve, & H. Van Dyck (Eds.), Ecology of butterfles in Europe (pp. 219–249). Cambridge.

    Google Scholar 

  • Dincă, V., Montagud, S., Talavera, G., Hernández-Roldán, J., Munguira, M. L., García-Barros, E., Herbert, P. D. N., & Vila, R. (2015). DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Scientific Reports, 5(1), 1–12. https://doi.org/10.1038/srep12395

  • Dincă, V., Lee, K. M., Vila, R., & Mutanen, M. (2019). The conundrum of species delimitation: A genomic perspective on a mitogenetically super-variable butterfly. Proceedings of the Royal Society B, 286(1911), 20191311. https://doi.org/10.1098/rspb.2019.1311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doenecke, D., Albig, W., Bode, C., Drabent, B., Franke, K., Gavenis, K., & Witt, O. (1997). Histones: Genetic diversity and tissue-specific gene expression. Histochemistry and Cell Biology, 107(1), 1–10. https://doi.org/10.1007/s004180050083

    Article  PubMed  CAS  Google Scholar 

  • Dragan, S. V. (2018) First record of Apatura iris (Linnaeus 1758) (Lepidoptera: Nymphalidae) from the Republic of Khakassia (South Siberia). Acta Biologica Sibirica, 4(4), 114–115. https://doi.org/10.14258/abs.v4.i4.4884

  • Dubatolov, V. V., & Kosterin, O. E. (2000). Nemoral species of Lepidoptera (Insecta) in Siberia: A novel view on their history and the timing of their range disjunctions. Entomologica Fennica, 11(3), 141–166. https://doi.org/10.33338/ef.84061

  • Dubatolov, V. V., Antonova, E. M., & Kosterin, O. E. (1994). Eversmannia exornata (Eversmann, 1837), the only known representative of the Epiplemidae family (Lepidoptera) in West Palearctic. Actias, 1–2.

  • Dubatolov, V. V., & Kosterin, O. E. (2015). Is Triodia nubifer (Lepidoptera, Hepialidae) the only pre- or intergacial relic species of Lepidoptera in the Altai-Sayan Mountain System?. Euroasian Entomological Journal, 14(2), 134–138.

    Google Scholar 

  • Dubatolov, V. V., Zolotuhin, V. V., & Witt, T. J. (2016). Revision of Lithosia Fabricius, 1798 and Conilepia Hampson, 1900 (Lepidoptera, Arctiidae). Zootaxa, 4107(2), 175–196. https://doi.org/10.11646/zootaxa.4107.2.3

  • Dudko, RYu. (2011). Relict beetles (Coleoptera: Carabidae, Agyrtidae) with Altai – East Asian disjunctive range. Eurasian Entomological Journal, 10(3), 349–360.

    Google Scholar 

  • Ebel, E. R., DaCosta, J. M., Sorenson, M. D., Hill, R. I., Briscoe, A. D., Willmott, K. R., & Mullen, S. P. (2015). Rapid diversification associated with ecological specialization in Neotropical Adelpha butterflies. Molecular Ecology, 24(10), 2392–2405. https://doi.org/10.1111/mec.13168

    Article  PubMed  CAS  Google Scholar 

  • Ebdon, S., Laetsch, D. R., Dapporto, L., Hayward, A., Ritchie, M. G., Dincӑ, V., Vila, R., & Lohse, K. (2021). The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Molecular Ecology, 30(14), 3575–3589. https://doi.org/10.1111/mec.15981

    Article  PubMed  Google Scholar 

  • Eirín-López, J. M., González-Romero, R., Dryhurst, D., Méndez, J., & Ausió, J. (2009). Long-term evolution of histone families: Old notions and new insights into their mechanisms of diversification across eukaryotes. In Evolutionary Biology (pp. 139–162). Springer Berlin Heidelberg.

  • EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628. https://doi.org/10.1038/nature02599

    Article  CAS  Google Scholar 

  • Ermakov, N. (1998). The Altaian relict subnemoral forest belt and the vegetation of pre-Pleistocene mountainous landscapes. Phytocoenologia31-44. https://doi.org/10.1127/phyto/28/1998/31

    Article  Google Scholar 

  • Farrel, B. D. (2001). Evolutionary assembly of the milkweed fauna: Cytochrome oxidase I and the age of Tetraopes beetles. Molecular Phylogenetics and Evolution, 18(3), 467–478. https://doi.org/10.1006/mpev.2000.0888

    Article  CAS  Google Scholar 

  • Fedorov, V. B., Goropashnaya, A. V., Boeskorov, G. G., & Cook, J. A. (2008). Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): Implications for late Quaternary history of the taiga species in Eurasia. Molecular Ecology, 17(2), 598–610. https://doi.org/10.1006/mpev.2000.0888

    Article  PubMed  CAS  Google Scholar 

  • Ferchaud, A. L., Ursenbacher, S., Cheylan, M., Luiselli, L., Jelić, D., Halpern, B., Major, A., Kotenko, T., Keyan, N., Behrooz, R., Crnobrnja-Isailović, J., Tomović, L., Ghira, I., Ioannidis, Y., Arnal, V., & Montgrlard, C. (2012). Phylogeography of the Vipera ursinii complex (Viperidae): Mitochondrial markers reveal an east–west disjunction in the Palaearctic region. Journal of Biogeography, 39(10), 1836–1847. https://doi.org/10.1111/j.1365-2699.2012.02753.x

    Article  Google Scholar 

  • Finger, A., Schmitt, T., Emmanuel Zachos, F., Meyer, M., Assmann, T., & Christian Habel, J. (2009). The genetic status of the Violet Copper Lycaena helle – a relict of the cold past in times of global warming. Ecography, 32(3), 382–390. https://doi.org/10.1111/j.1600-0587.2008.05766.x

    Article  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.

    PubMed  CAS  Google Scholar 

  • Forister, M. L., Fordyce, J. A., & Shapiro, A. M. (2004). Geological barriers and restricted gene flow in the holarctic skipper Hesperia comma (Hesperiidae). Molecular Ecology, 13(11), 3489–3499. https://doi.org/10.1111/j.1365-294X.2004.02349.x

    Article  PubMed  CAS  Google Scholar 

  • Fradkina, A. F. (1995). Palynostratigraphy of Paleogene and Neogene sediments in North-Eastern Russia. Geophysics and Mineralogy Press. in Russian.

    Google Scholar 

  • Gorbunov, P., & Kosterin, O. (2007). The butterflies (Hesperioidea and Papilionoidea) of North Asia (Asian part of Russia) in nature. Rodina & Fodio, Aidis Producer’s House, 2, 1–852.

    Google Scholar 

  • Goropashnaya, A. V., Fedorov, V. B., Seifert, B., & Pamilo, P. (2004). Limited phylogeographical structure across Eurasia in two red wood ant species Formica pratensis and F. lugubris (Hymenoptera, Formicidae). Molecular Ecology, 13(7), 18491858. https://doi.org/10.1111/j.1365-294X.2004.02189.x

  • Habel, J. C., Finger, A., Schmitt, T., & Neve, G. (2011a). Survival of the endangered butterfly Lycaena helle in a fragmented environment: Genetic analyses over 15 years. Journal of Zoological Systematics and Evolutionary Research, 49(1), 25–31. https://doi.org/10.1111/j.1439-0469.2010.00575.x

    Article  Google Scholar 

  • Habel, J. C., Roedder, D., Schmitt, T., & Neve, G. (2011b). Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Global Change Biology, 17(1), 194–205. https://doi.org/10.1111/j.1365-2486.2010.02233.x

    Article  Google Scholar 

  • Habel, J. C., Schmitt, T., Meyer, M., Finger, A., Roedder, D., Assmann, T., & Zachos, F. E. (2010). Biogeography meets conservation: The genetic structure of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermüller, 1775). Biological Journal of the Linnean Society, 101(1), 155–168. https://doi.org/10.1111/j.1095-8312.2010.01471.x

    Article  Google Scholar 

  • Happel, N., & Doenecke, D. (2009). Histone H1 and its isoforms: Contribution to chromatin structure and function. Gene, 431(1), 1–12. https://doi.org/10.1016/j.gene.2008.11.003

    Article  PubMed  CAS  Google Scholar 

  • Haring, E., Gamauf, A., & Kryukov, A. (2007). Phylogeographic patterns in widespread corvid birds. Molecular Phylogenetics and Evolution, 45(3), 840–862. https://doi.org/10.1016/j.ympev.2007.06.016

    Article  PubMed  CAS  Google Scholar 

  • Hassall, C., & Thompson, D. J. (2008). The effects of environmental warming on Odonata: A review. International Journal of Odonatology, 11(2), 131–153. https://doi.org/10.1080/13887890.2008.9748319

    Article  Google Scholar 

  • Hausmann, A., Haszprunar, G., Segerer, A. H., Speidel, W., Behounek, G., & Hebert, P. D. (2011). Now DNA-barcoded: The butterflies and larger moths of Germany. Spixiana, 34(1), 47–58.

    Google Scholar 

  • Hazkani-Covo, E., Zeller, R. M., & Martin, W. (2010). Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genetics, 6(2), e1000834. https://doi.org/10.1371/journal.pgen.1000834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hlaing, T., Tun-Lin, W., Somboon, P., Socheat, D., Setha, T., Min, S., Chang, M. S., & Walton, C. (2009). Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: Implications for past and future population genetic studies. BMC Genetics, 10(1), 1–12. https://doi.org/10.1186/1471-2156-10-11

    Article  CAS  Google Scholar 

  • Huemer, P., Karsholt, O., & Mutanen, M. (2014). DNA barcoding as a screening tool for cryptic diversity: An example from Caryocolum, with description of a new species (Lepidoptera, Gelechiidae). Zookeys, 404, 91–111. https://doi.org/10.3897/zookeys.404.7234

    Article  Google Scholar 

  • Huemer, P., & Hausmann, A. (2009). A new expanded revision of the European high mountain Sciadia tenebraria species group (Lepidoptera, Geometridae). Zootaxa, 2117(1), 1–30. https://doi.org/10.11646/zootaxa.2117.1.1

    Article  Google Scholar 

  • Huemer, P. & Hebert, P. D. N. (2011). Cryptic diversity and morphology of high alpine Sattleria – A case study combining DNA barcodes and morphology (Lepidoptera: Gelechiidae). Zootaxa, 2981(1), 1–22. https://doi.org/10.11646/zootaxa.2981.1.1

  • Huemer, P., Karsholt, O., Aarvik, L., Berggren, K., Bidzilya, O., Junnilainen, J., Landry, J. F., Mutanen, M., Nupponen, K., Segerer, A., Šumpich, J., Wieser, C., Wiesmair, B., & Hebert, P. D. (2020). DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity. ZooKeys, 921, 141. https://doi.org/10.3897/zookeys.921.49199

    Article  PubMed  PubMed Central  Google Scholar 

  • Huemer, P., & Mutanen, M. (2012). Taxonomy of spatially disjunct alpine Teleiopsis albifemorella s. lat.(Lepidoptera: Gelechiidae) revealed by molecular data and morphology–How many species are there. Zootaxa, 3580(1), 1–23. https://doi.org/10.11646/zootaxa.3580.1.1

  • Hundertmark, K. J., Shields, G. F., Udina, I. G., Bowyer, R. T., Danilkin, A. A., & Schwartz, C. C. (2002). Mitochondrial phylogeography of moose (Alces alces): Late Pleistocene divergence and population expansion. Molecular Phylogenetics and Evolution, 22(3), 375–387. https://doi.org/10.1006/mpev.2001.1058

    Article  PubMed  CAS  Google Scholar 

  • Imbrie, J., Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, G., Kutzbach, J., Martinson, D., & McIntyre, A. (1993). On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography, 8(6), 699–735. https://doi.org/10.1029/93PA02751

  • Ivonin, V. V., Kosterin, O. E., & Nikolaev, S. L. (2013). Butterflies (Lepidoptera, Diurna) of Novosibirskaya Oblast, Russia. 3. Nymphalidae (without Satyrinae). Eurasian Entomological Journal, 12(2), 177–199, in Russian, with English summary.

  • Ivonin, V. V., Kosterin, O. E., & Nikolaev, S. L. (2016). Butterflies (Lepidoptera, Diurna) of Novosibirskaya Oblast, Russia. Nymphalidae, Satyrinae). Eurasian Entomological Journal, 15(2), 143–158, in Russian, with English summary.

  • Ivonin, V. V.,  Kosterin, O. E., Nikolaev, S. L., & Yudina, M. A. (2019). Butterflies (Lepidoptera Diurna) of Novosibirskaya Oblast’ Russia. 4. Updates and general discussion. Euroasian Entomological Journal, 17(1), 26–52. https://doi.org/10.15298/euroasentj.17.1.04

  • Jödicke, R., Langhoff, P., & Misof, B. (2004). The species group taxa in the Holarctic genus Cordulia: A study in nomenclature and genetic differentiation (Odonata: Corduliidae). International Journal of Odonatology, 7(1), 37–52. https://doi.org/10.1080/13887890.2004.9748193

    Article  Google Scholar 

  • Jordal, B. H., & Kambestad, M. (2014). DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Molecular Ecology Resources, 14(1), 7–17. https://doi.org/10.1111/1755-0998.12150

    Article  PubMed  CAS  Google Scholar 

  • Kirichenko, N., Huemer, P., Deutsch, H., Triberti, P., Rougerie, R., & Lopez-Vaamonde, C. (2015). Integrative taxonomy reveals a new species of Callisto (Lepidoptera, Gracillariidae) in the Alps. ZooKeys, 473, 157. https://doi.org/10.3897/zookeys.473.8543

    Article  Google Scholar 

  • Kleckova, I., Cesanek, M., Fric, Z., & Pellissier, L. (2015). Diversification of the cold-adapted butterfly genus Oeneis related to Holarctic biogeography and climatic niche shifts. Molecular Phylogenetics and Evolution, 92, 255–265. https://doi.org/10.1016/j.ympev.2015.06.012

    Article  PubMed  CAS  Google Scholar 

  • Knyazev, S. A., & Kosterin, O. E. (2003). New records of nemoral butterflies Apatura iris (L., 1758) and Maniola jurtina (L., 1958) in West Siberia and their probable zoogeographical significance. Eurasian Entomological Journal, 2(3), 193–194, in Russian, with English summary.

  • Korshunov, J. P. (1970) Rhopalocera (Lepidoptera) from Yakutia, Predbaikalia and Transbaikalia. In: Cherepanov, A.I. (ed.) The Fauna From Siberia (pp. 152–201), Nauka, Novosibirsk, in Russian, with English summary.

  • Kosterin, O. E., Knyazev, S. A., Poteiko, A. A., Ponomarev, K. B., Kosheleva, T. F., & Teploukhov, V. Y. (2007). New records of butterflies in Tomskaya and Omskaya Oblast’. Eurasian Entomological Journal, 6(4), 473–482, in Russian, with English summary.

  • Kosterin, O. E. (2005). Western range limits and isolates of eastern odonate species in Siberia and their putative origins. Odonatologica, 34(3), 219–242.

    Google Scholar 

  • Kosterin, O. E., Bogdanova, V. S., Gorel, F. L., Rozov, S. M., Trusov, Y. A., & Berdnikov, V. A. (1994). Histone H1 of the garden pea (Pisum sativum L.); composition, developmental changes, allelic polymorphism and inheritance. Plant Science, 101(2), 189–202. https://doi.org/10.1016/0168-9452(94)90255-0

  • Kosterin, O. E. (2002). Western range limits and isolates of eastern odonate species in Siberia and their putative origins. Odonatologica, 34(3), 219–242.

    Google Scholar 

  • Kostyunin, A. E., & Klyueva, A. A. (2020). First record of Meadowy Brown Maniola jurtina (Linnaeus, 1758) in Siberia (Lepidoptera, Satyridae). Euroasian Entomological Journal, 19(5), 264–267. https://doi.org/10.15298/euroasentj.19.5.07

  • Koutroumpa, F. A., Lieutier, F., & Roux-Morabito, G. (2009). Incorporation of mitochondrial fragments in the nuclear genome (Numts) of the longhorned beetle Monochamus galloprovincialis (Coleoptera, Cerambycidae). Journal of Zoological Systematics and Evolutionary Research, 47(2), 141–148. https://doi.org/10.1111/j.1439-0469.2008.00492.x

    Article  Google Scholar 

  • Kozhevnikov, Y. P., & Ukraintseva, V. V. (1992). Some features of vegetation cover of Eurasia in the earliest Holocene. Botanicheskii Zhurnal, 77(8), 1–9. in Russian.

    Google Scholar 

  • Kryukov, A., Iwasa, M. A., Kakizawa, R., Suzuki, H., Pinsker, W., & Haring, E. (2004). Synchronic east–west divergence in azure-winged magpies (Cyanopica cyanus) and magpies (Pica pica). Journal of Zoological Systematics and Evolutionary Research, 42(4), 342–351. https://doi.org/10.1111/j.1439-0469.2004.00287.x

    Article  Google Scholar 

  • Lämmermann, K., Vogel, H., & Traut, W. (2016). The mitochondrial genome of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae), and identification of invading mitochondrial sequences (Numts) in the W chromosome. European Journal of Entomology, 113, 482–488. https://doi.org/10.14411/eje.2016.063

  • Lifton, R. P., Goldberg, M. L., Karp, R. W., & Hogness, D. S. (1978). The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. In Cold Spring Harbor symposia on quantitative biology (Vol. 42, pp. 1047–1051). Cold Spring Harbor Laboratory Press.

  • Logunov, D. V. (1996). Preliminary report on the Euro-Siberian faunal connections of jumping spiders (Aranea, Salticidae). Acta Zoological Fennica, 201, 71–76.

    Google Scholar 

  • Lukhtanov, V. A., Sourakov, A., Zakharov, E. V., & Hebert, P. D. (2009). DNA barcoding Central Asian butterflies: Increasing geographical dimension does not significantly reduce the success of species identification. Molecular Ecology Resources, 9(5), 1302–1310. https://doi.org/10.1111/j.1755-0998.2009.02577.x

    Article  PubMed  Google Scholar 

  • Magnacca, K. N., & Brown, M. J. (2010). Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology, 10(1), 174. https://doi.org/10.1186/1471-2148-10-174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mardulyn, P., Mikhailov, Y. E., & Pasteels, J. M. (2009). Testing phylogeographic hypotheses in a euro-siberian cold-adapted leaf beetle with coalescent simulations. Evolution, 63(10), 2717–2729. https://doi.org/10.1111/j.1558-5646.2009.00755.x

    Article  PubMed  CAS  Google Scholar 

  • Matyushkin, E. N. (1976). European-East Asian break between the ranges of terrestrial vertebrates. Zoologicheskiy Zhurnal, 55(9), 1277–1291. in Russian.

    Google Scholar 

  • Menchetti, M., Talavera, G., Cini, A., Salvati, V., Dincă, V., Platania, L., Bonelli, S., Balletto, E., Vila, R. & Dapporto, L. (2021). Two ways to be endemic. Alps and Apennines are different functional refugia during climatic cycles. Molecular Ecology, 30(5), 1297–1310. https://doi.org/10.1111/mec.15795

  • Mikkola, K. (1987). Pattern of noctuid species common between the extremeties of the Palaeacrtic zone: A result of glacial and postglacial movements. Timea Supplement, 12, 310–315.

    Google Scholar 

  • Mullen, S. P. (2006). Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). Molecular Phylogenetics and Evolution, 39(3), 747–758. https://doi.org/10.1016/j.ympev.2006.01.021

    Article  PubMed  CAS  Google Scholar 

  • Mullen, S. P., Savage, W. K., Wahlberg, N., & Willmott, K. R. (2010). Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proceedings of the Royal Society of London b: Biological Sciences, 278(1713), 1777–1785. https://doi.org/10.1098/rspb.2010.2140

    Article  Google Scholar 

  • Mutanen, M., Hausmann, A., Hebert, P. D., Landry, J. F., de Waard, J. R., & Huemer, P. (2012). Allopatry as a Gordian knot for taxonomists: Patterns of DNA barcode divergence in arctic-alpine Lepidoptera. PLoS ONE, 7(10), e47214. https://doi.org/10.1371/journal.pone.0047214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazarenko, A. A. (1992). Faunistical cycles: extinction – expansion – extinction... A modern history of the Dendrphilous Ornithofauna of Eastern palaearctic. [D. Sci. Thesis, Institute of Biology and Pedology, Vladivostok], in Russian.

  • Nei, M., & Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121–152. https://doi.org/10.1146/annurev.genet.39.073003.112240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nice, C. C., Gompert, Z., Fordyce, J. A., Forister, M. L., Lucas, L. K. & Buerkle, C. A. (2013). Hybrid speciation and independent evolution in lineages of alpine butterflies. Evolution, 67(4), 1055–1068. https://doi.org/10.1111/evo.12019

  • Oshida, T., Abramov, A., Yanagawa, H., & Masuda, R. (2005). Phylogeography of the Russian flying squirrel (Pteromys volans): Implication of refugia theory in arboreal small mammal of Eurasia. Molecular Ecology, 14(4), 1191–1196. https://doi.org/10.1111/j.1365-294X.2005.02475.x

    Article  PubMed  CAS  Google Scholar 

  • Ott, J. (2001). Expansion of Mediterranean Odonata in Germany and Europe–consequences of climatic changes. “Fingerprints” of Climate Change: Adapted Behaviour and Shifted Species Ranges (pp. 89–111). Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Ott, J. (2007). The expansion of Crocothemis erythraea (Brullé, 1832) in Germany-an indicator of climatic changes. In Odonata: Biology of dragonflies (pp. 201–222). Scientific Publishers (India).

  • Pamilo, P., Viljakainen, L., & Vihavainen, A. (2007). Exceptionally high density of NUMTs in the honeybee genome. Molecular Biology and Evolution, 24(6), 1340–1346. https://doi.org/10.1093/molbev/msm055

    Article  PubMed  CAS  Google Scholar 

  • Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., & Descimon, H. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579–583. https://doi.org/10.1038/21181

  • Paulson, D. R. (2001). Recent Odonata records from southern Florida-effects of global warming?. International Journal of Odonatology, 4(1), 57–69. https://doi.org/10.1080/13887890.2001.9748159

    Article  Google Scholar 

  • Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., & Delaygue, G. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarctica. Nature, 399(6735), 429–436. https://doi.org/10.1038/20859

    Article  CAS  Google Scholar 

  • Polozhiy, A. V., & Krapivkina, E. D. (1985). Relics of the Tertiary Broad-leaved Forests in the Flora of Siberia. Tomsk University Press, 158 pp, in Russian.

  • Ponte, I., Vila, R., & Suau, P. (2003). Sequence complexity of histone H1 subtypes. Molecular Biology and Evolution, 20(3), 371–380. https://doi.org/10.1093/molbev/msg041

    Article  PubMed  CAS  Google Scholar 

  • Quek, S. P., Davies, S. J., Itino, T., & Pierce, N. E. (2004). Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myamicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution, 58(3), 554–570. https://doi.org/10.1111/j.0014-3820.2004.tb01678.x

    Article  PubMed  CAS  Google Scholar 

  • Quinzin, M. C., & Mardulyn, P. (2014). Multi-locus DNA sequence variation in a complex of four leaf beetle species with parapatric distributions: Mitochondrial and nuclear introgressions reveal recent hybridization. Molecular Phylogenetics and Evolution, 78, 14–24. https://doi.org/10.1016/j.ympev.2014.05.003

    Article  PubMed  CAS  Google Scholar 

  • Quinzin, M. C., Normand, S., Dellicour, S., Svenning, J. C., & Mardulyn, P. (2017). Glacial survival of trophically linked boreal species in northern Europe. Proceedings of the Royal Society b: Biological Sciences, 284(1856), 20162799. https://doi.org/10.1098/rspb.2016.2799

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut, A., Suchard, M., Xie, D., & Drummond, A. (2014). Tracer v1.6 [Computer software] Retrieved from http://beast.community/tracer

  • Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 21(6), 1081–1084. https://doi.org/10.1093/molbev/msh110

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: Methods in molecular biology (pp. 365–386). Humana Press.

    Google Scholar 

  • Rödder, D., Schmidt, T., Gros, P., Ulrich, W., & Habel, J. C. (2021). Climate change drives mountain butterflies towards the summits. Scientific Reports, 11, 14382. https://doi.org/10.1038/s41598-021-93826-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saitoh, T., Alström, P., Nishiumi, I., Shigeta, Y., Williams, D., Olsson, U., & Ueda, K. (2010). Old divergences in a boreal bird supports long-term survival through the Ice Ages. BMC Evolutionary Biology, 10(1), 35. https://doi.org/10.1186/1471-2148-10-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanmartin, I., Enghoff, H., & Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73(4), 345–390. https://doi.org/10.1111/j.1095-8312.2001.tb01368.x

    Article  Google Scholar 

  • Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4(1), 1–13. https://doi.org/10.1186/1742-9994-4-11

    Article  Google Scholar 

  • Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology, 6(1), 1–10. https://doi.org/10.1186/1742-9994-6-9

    Article  Google Scholar 

  • Schmitt, T. (2017). Molecular biogeography of the high mountain systems of Europe: An overview. In High mountain conservation in a changing world (pp. 63–74). Springer, Cham.

  • Schmitt, T., & Hewitt, G. M. (2004). Molecular biogeography of the arctic-alpine disjunct burnet moth species Zygaena exulans (Zygaenidae, Lepidoptera) in the Pyrenees and Alps. Journal of Biogeography, 31(6), 885–893. https://doi.org/10.1111/j.1365-2699.2004.01079.x

    Article  Google Scholar 

  • Schmitt, T., Hewitt, G. M., & Müller, P. (2006). Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. Journal of Evolutionary Biology, 19(1), 108–113. https://doi.org/10.1111/j.1420-9101.2005.00980.x

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, T., & Seitz, A. (2001) Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 74(4), 429–458. https://doi.org/10.1111/j.1095-8312.2001.tb01404.x

  • Schmitt, T., & Varga, Z. (2012). Extra-Mediterranean refugia: The rule and not the exception?. Frontiers in Zoology, 9(1), 1–12. https://doi.org/10.1186/1742-9994-9-22

    Article  Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6), 651–701. https://doi.org/10.1093/aesa/87.6.651

    Article  CAS  Google Scholar 

  • Sistri, G., Menchetti, M., Santini, L., Pasquali, L., Sapienti, S., Cini, A., Platania, L., Balletto, E., Barbero, F., Cassacci, L. P., Dincă, V., Vila, R., Mantoni, C., Fattorini, S., & Dapporto, L. (2021). The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. Insect Conservation and Diversity, 15(1), 136–148. https://doi.org/10.1111/icad.12538

    Article  Google Scholar 

  • Sitnikov, P. S. (1992). To a regional inventory of rare insects of the Tyumen region. Ezhegodnik Tyumenskogo Oblastnogo Kraevedcheskogo Muzeya, 1992, 200–228. in Russian.

    Google Scholar 

  • Solovyev, V. I., Bogdanova, V. S., Dubatolov, V. V., & Kosterin, O. E. (2015a). Range of a Palearctic uraniid moth Eversmannia exornata (Lepidoptera: Uraniidae: Epipleminae) was split in the Holocene, as evaluated using histone H1 and COI genes with reference to the Beringian disjunction in the genus Oreta (Lepidoptera: Drepanidae). Organisms Diversity & Evolution, 15(2), 285–300. https://doi.org/10.1007/s13127-014-0195-1

    Article  Google Scholar 

  • Solovyev, V. I., Ilinsky, Y., & Kosterin, O. E. (2015b). Genetic integrity of four species of Leptidea (Pieridae, Lepidoptera) as sampled in sympatry in West Siberia. Comparative Cytogenetics, 9(3), 299. https://doi.org/10.3897/CompCytogen.v9i3.4636

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences, 105(36), 13486–13491. https://doi.org/10.1073/pnas.0803076105

    Article  Google Scholar 

  • Simonsen, T. J., Wahlberg, N., Warren, A. D., & Sperling, F. A. (2010). The evolutionary history of Boloria (Lepidoptera: Nymphalidae): Phylogeny, zoogeography and larval–foodplant relationships. Systematics and Biodiversity, 8(4), 513–529. https://doi.org/10.1080/14772000.2010.532833

    Article  Google Scholar 

  • Sunnucks, P., & Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13(3), 510–524. https://doi.org/10.1093/oxfordjournals.molbev.a025612

    Article  PubMed  CAS  Google Scholar 

  • Suvorov, A. (2011). Comparative molecular genetics of Nechalennia speciosa (Charpentier) from geographically distant populations (Zygoptera: Coenagrionidae). Odonatologica, 40(2), 131–136.

    Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197

  • Todisco, V. , Gratton, P., D., Cesaroni, D., & Sbordoni, V.  (2010a). Phylogeography of Parnassius apollo: hints on taxonomy and conservation of a vulnerable glacial butterfly invader. Biological Journal of the Linnean Society, 101(1), 169–183. https://doi.org/10.1111/j.1095-8312.2010.01476.x

  • Todisco, V., Gratton, P., Zakharov, E. V., Wheat, C. W., Sbordoni, V., & Sperling, F. A. (2010b). Mitochondrial phylogeography of the Holarctic Parnassius phoebus complex supports a recent refugial model for alpine butterflies. Journal of Biogeography, 39(6), 1058–1072. https://doi.org/10.1111/j.1365-2699.2011.02675.x

    Article  Google Scholar 

  • Uimaniemi, L., Orell, M., Mönkkönen, M., Huhta, E., Jokimäki, J., & Lumme, J. (2000). Genetic diversity in Siberian Jay Perisoreus infaustus in fragmented old-growth forests of Fennoscandia. Ecography, 23(6), 669–677. https://doi.org/10.1111/j.1600-0587.2000.tb00310.x

    Article  Google Scholar 

  • Ukraintseva, V. V. (1996). Late Pleistocene and Holocene floras of Siberia. Botanicheskii Zhurnal, 81, 37–48. in Russian.

    Google Scholar 

  • Ursenbacher, S., Carlsson, M., Helfer, V., Tegelström, H., & Fumagalli, L. (2006). Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Molecular Ecology, 15(11), 3425–3437. https://doi.org/10.1111/j.1365-294X.2006.03031.x

    Article  PubMed  CAS  Google Scholar 

  • Usami, S. -I., Isaka, I., Nishio, S. -Y., Nakatani, T., & Itoh, T. (2021). Phylogeny and biogeography of arcto-alpine butterflies of the genus Oeneis. Entomological Science, 24, 183–195. https://doi.org/10.1111/ens.12465

    Article  Google Scholar 

  • Varga, Z. S., & Schmitt, T. (2008). Types of oreal and oreotundral disjunctions in the western Palearctic. Biological Journal of the Linnean Society, 93(2), 415–430. https://doi.org/10.1111/j.1095-8312.2007.00934.x

    Article  Google Scholar 

  • Velichko, A. A. (ed.). (1993). Evolution of landscapes and climates of the Northern Eurasia. Late Pleistocene – Holocene, Elements of Prognosis. I. Regional Plaeogeography. Nauka, in Russian, with English summary.

  • Vila, R., Bell, C. D., Macniven, R., Goldman-Huertas, B., Ree, R. H., Marshall, C. R., Bálint, Z., Johnson, K., Benyamini, D., & Pierce, N. E. (2011). Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society of London b: Biological Sciences, 278(1719), 2737–2744. https://doi.org/10.1098/rspb.2010.2213

    Article  Google Scholar 

  • Wahlberg, N., & Wheat, C. W. (2008). Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology, 57(2), 231–242. https://doi.org/10.1080/10635150802033006

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev, R. V., & Kostyunin, A. E. (2015). Range expansion of Apatura iris (Linnaeus, 1758) in Siberia (Lepidoptera: Nymphalidae). SHILAP Revista De Lepidopterología, 43(170), 305–308.

    Google Scholar 

  • Yakovlev, R.V., Huemer, P., Wiesmar, B., Sinev, S. Y., Wieser, C., Kulak, A. V., Inozemtsev, A. G., Doroshkin, V. V. & Naydenov, A. E. (2017). New records of Lycaenidae and Nymphalidae (Lepidoptera, Papilionidae) from Altai Mountains. Ukrainian Journal of Ecology, 7 (4), 469–472. https://doi.org/10.15421/2017_145

  • Yurtsev, B. A. (1981). Relic Steppen complexes of North-East Asia. Nauka. in Russian.

  • Zaytseva, O. O., Bogdanova, V. S., & Kosterin, O. E. (2012). Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.)(peas) using a histone H1 gene. Gene, 504(2), 192–202. https://doi.org/10.1016/j.gene.2012.05.026

  • Zaytseva, O. O., Gunbin, K. V., Mglinets, A. V., & Kosterin, O. E. (2015). Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution. Gene, 556(2), 235–244. https://doi.org/10.1016/j.gene.2014.11.062

  • Zhang, D. X., & Hewitt, G. M. (1996). Nuclear integrations: Challenges for mitochondrial DNA markers. Trends in Ecology & Evolution, 11(6), 247–251. https://doi.org/10.1016/0169-5347(96)10031-8

    Article  CAS  Google Scholar 

  • Zinenko, O., Stümpel, N., Mazanaeva, L., Bakiev, A., Shiryaev, K., Pavlov, A., Kotenko, T., Kukushkin, O., Chikin, Y., Duisebayeva, T., Nilson, G., Orlov, N. L., Tuniyev, S., Ananjeva, N. B., Murphy, R. W., & Joger, U. (2015). Mitochondrial phylogeny shows multiple independent ecological transitions and northern dispersion despite of Pleistocene glaciations in meadow and steppe vipers (Vipera ursinii and Vipera renardi). Molecular Phylogenetics and Evolution, 84, 85–100. https://doi.org/10.1016/j.ympev.2014.12.005

    Article  PubMed  Google Scholar 

  • Zink, R. M., Drovetski, S. V., & Rohwer, S. (2002). Phylogeographic patterns in the great spotted woodpecker Dendrocopos major across Eurasia. Journal of Avian Biology, 33(2), 175–178. https://doi.org/10.1034/j.1600-048X.2002.330208.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vladimir A. Lukhtanov, Vadim K. Zinchenko, Margarita G. Kovalenko (Bush) and Kim Mitter (ATO Lepidoptera collection) for specimens of Limenitis spp., to Vera S. Bogdanova for various valuable help and to Vasiliy V. Reshetnkov for consultations on qPCR. The work was supported by the Russian State Scientific Programmes FWNR-2022-0019 and FNI-0247-2021-0004 and the project 16-34-0084516 of the Russian Foundation for Basic Research.

Funding

The work was supported by the Scientific Programmes FWNR-2022–0019 and FNI-0247-2021-0004 and the project 16–34-0084516 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Specimens were collected by Oleg E. Kosterin and Vladimir V. Dubatolov. Vladimir I. Solovyev and Oleg E. Kosterin designed the experiments, performed phylogenetic analyses, Vladimir I. Solovyev performed molecular analysis, and Valeriya Y. Vavilova cloned histone H1 genes. Analyses of results were performed by Vladimir I. Solovyev, Oleg E. Kosterin, and Vladimir V. Dubatolov. The first draft of the manuscript was written by Vladimir I. Solovyev, Oleg E. Kosterin and Vladimir V. Dubatolov and all authors commented on subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oleg E. Kosterin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 268 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyev, V.I., Dubatolov, V.V., Vavilova, V.Y. et al. Estimating range disjunction time of the Palearctic Admirals (Limenitis L.) with COI and histone H1 genes. Org Divers Evol 22, 975–1002 (2022). https://doi.org/10.1007/s13127-022-00565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-022-00565-9

Keywords

Navigation