Skip to main content
Log in

Exploring the Triple Applications of Ag/PMAc-g-CNT Nanocomposites in Enhancing HER, OER and Supercapacitor Performance

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The research aims to investigate the potential of using Ag/PMAc-g-CNT as a high-efficient catalyst for overall water splitting and supercapacitor applications. The results of Tafel slope measurements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed that the Ag/PMAc-g-CNT catalyst had a lower Tafel slope of 22.62 mV dec−1 and 62.74 mV dec−1, respectively, compared to the other electrocatalysts. Additionally, the capacitance value of the Ag/PMAc-g-CNT catalyst was found to be 41.87 F at 0.5 A/g current density which is much higher than that of the Ag/PMAc catalyst. These results demonstrate that the Ag/PMAc-g-CNT catalyst has superior properties in terms of electrochemical activity, stability and energy storage capacity, making it a promising material for both water splitting and supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Clemente, D., et al.: On the potential synergies and applications of wave energy converters: a review. Renew. Sustain. Energy Rev. 135, 110162 (2021)

    Article  Google Scholar 

  2. Holechek, J.L., et al.: A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14(8), 4792 (2022)

    Article  Google Scholar 

  3. Fung, C.-M., et al.: Red phosphorus: an up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 122(3), 3879–3965 (2021)

    Article  Google Scholar 

  4. Şahin, Ã., et al.: Physical and electrochemical effect of bimetallic Pd–Mo nanoalloys supported on vulcan XC-72r carbon as cathode catalysts for proton exchange membrane fuel cell. Electrocatalysis 14(2), 202–212 (2023)

    Article  MathSciNet  Google Scholar 

  5. Dincer, I., Acar, C.: Review and evaluation ofhydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40(34), 11094–11111 (2015)

    Article  Google Scholar 

  6. Midilli, A., et al.: A comprehensive review on hydrogen production from coal gasification. Chall. Oppor. 46(50), 25385–25412 (2021)

    Google Scholar 

  7. Elma Karakaş, D., Kaya, M., Horoz, S.J.C.L.: Efficient hydrogen generation from the NaBH4 methanolysis by waste material: banana peel. Carbon Lett. 32(6), 1593–1601 (2022)

    Article  Google Scholar 

  8. Yu, Z.Y., et al.: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33(31), 2007100 (2021)

    Article  Google Scholar 

  9. Parvulescu, V.I., et al.: Recent progress and prospects in catalytic water treatment. Chem. Rev. 122(3), 2981–3121 (2021)

    Article  Google Scholar 

  10. Salimi, M., Pirouzfar, V.: Synthesis of a novel nano-ceramic membrane for hydrogen separation and purification. J. Aust. Ceramic Soc. (2018). https://doi.org/10.1007/s41779-017-0151-6

    Article  Google Scholar 

  11. Seglah, P.A., et al.: Utilization of food waste for hydrogen-based power generation:evidence from four cities in Ghana. Heliyon 9(3), e143373 (2023)

    Article  Google Scholar 

  12. Yu, B., et al.: 2D CdS functionalized by NiS2-doped carbon nanosheets for photocatalytic H2 evolution. Appl. Surface Sci. 592, 153259 (2022)

    Article  Google Scholar 

  13. Zhang, Y., et al.: Electrolysis of the Bunsen reaction and properties of the membrane in the sulfur–iodine thermochemicalcycle. Ind. Eng. Chem. Res. 53(35), 13581–13588 (2014)

    Article  Google Scholar 

  14. Che, P., et al.: The bimetal synergistic bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. Ionics 27, 2139–2150 (2021)

    Article  Google Scholar 

  15. Li, X., et al.: Electrochemical activation strategy assisted morphology engineering Co–Fe layered double hydroxides for oxygen hydrogen evolution and supercapacitor. J. Colloid Interface Sci. 632, 186–195 (2023)

    Article  Google Scholar 

  16. Vij, V., et al.: Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017)

    Article  Google Scholar 

  17. Wu, H., et al.: Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4(3), 473–507 (2021)

    Article  Google Scholar 

  18. Zahra, R., et al.: A review on nickel cobalt sulphide and their hybrids: earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 45(46), 24518–24543 (2020)

    Article  Google Scholar 

  19. Zhang, L., et al.: Facile syntheses and enhanced electrocatalytic activities of pt nanocrystals with hkk high-index surfaces. Nano Res. 5, 181–189 (2012)

    Article  Google Scholar 

  20. Chatenet, M., et al.: Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51(11), 4583–4762 (2022)

    Article  Google Scholar 

  21. Chen, F.-Y., et al.: Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021)

    Article  Google Scholar 

  22. Yan, D., et al.: Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12(45), 2202317 (2022)

    Article  Google Scholar 

  23. Zhu, K., et al.: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73, 104761 (2020)

    Article  Google Scholar 

  24. Joe, J., et al.: Metal chalcogenides on silicon photocathodes for efficient water splitting: a mini overview. Catalysts 9(2), 149 (2019)

    Article  MathSciNet  Google Scholar 

  25. Alsultan, M., et al.: Synergistic amplification of oxygen generation in (photo) catalytic water splitting by a PEDOT/Nano-Co3O4/MWCNT thin film composite. ChemCatChem 12(6), 1580–1584 (2020)

    Article  Google Scholar 

  26. Oviedo-Mendoza, M., et al.: Improving P3HT: PCBM absorber layers by blending TiO 2/CdS nanocomposites for application in photovoltaic solar cells. J. Mater. Sci.: Mater. Electronics 32, 102–112 (2021)

    Google Scholar 

  27. Tiwari, S.K., Wang, N., Ha, S.K.: Graphene-based advanced materials: properties and their key applications. In: Sahoo, S., Tiwari, S., Nayak, G. (eds.) Surface Engineering of Graphene. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30207-8_2

    Chapter  Google Scholar 

  28. Zang, C., et al.: In situ growth of ZnO/Ag2O heterostructures on PVDF nanofibers as efficient visible-light-driven photocatalysts. Ceramic Int. 48(19), 27379–27387 (2022)

    Article  Google Scholar 

  29. Bera, R., et al.: Modifying influences of micro crystalline and nanocellulose on the gelling characteristics of poly (methacrylic acid-co-2-hydroxyethylmethacrylate). RSC Adv. 6(15), 12616–12626 (2016)

    Article  Google Scholar 

  30. Lee, S.H., et al.: Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics 12(1), 68 (2020)

    Article  Google Scholar 

  31. Mandal, B., et al.: Nanocomposite hydrogel derived from poly (methacrylic acid)/carboxymethyl cellulose/AuNPs: a potential transdermal drugs carrier. Polymer 120, 9–19 (2017)

    Article  Google Scholar 

  32. Hu, Y., et al.: One-dimensional Co3O4 nanonet with enhanced rate performance for lithium ion batteries: carbonyl-β-cyclodextrin inducing and kinetic analysis. Chem. Eng. J. 321, 31–39 (2017)

    Article  Google Scholar 

  33. Li, P., et al.: Dual role of nickel foam in NiCoAl-LDH ensuring high-performance for asymmetric supercapacitors. New J. Chem. 43(7), 3139–3145 (2019)

    Article  Google Scholar 

  34. Raza, W., et al.: Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018)

    Article  Google Scholar 

  35. Xu, H., Shen, M.: The control of lithium-ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: a review. Int. J. Energy Res. 45(15), 20524–20544 (2021)

    Article  Google Scholar 

  36. Wang, Y., et al.: Conductive polymers for stretchable supercapacitors. Nano Res. 12, 1978–1987 (2019)

    Article  Google Scholar 

  37. Chu, W., et al.: Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12(2), 2763–2772 (2019)

    Article  Google Scholar 

  38. Karakaş, D.E., et al.: Biomass-based metal-free catalyst as a promising supercapacitor electrode for energy storage. J. Mater. Sci.: Mater. Electronics 33(22), 18111–18123 (2022)

    Google Scholar 

  39. Karakaş, D.E., et al.: The dual functionality of Zn@BP catalyst: methanolysis and supercapatior. J. Mater. Sci.: Mater. Electronics 33(17), 13484–13492 (2022)

    Google Scholar 

  40. Jiang, J., et al.: Flower-like NiCo2S4/NiFeP/NF composite material as an effective electrocatalyst with high overall water splitting performance. Chinese Chem. Lett. 33(9), 4367–4374 (2022)

    Article  Google Scholar 

  41. Hanan, A., et al.: Co2FeO4@rGO composite: towards trifunctional water splitting in alkaline media. Int. J. Hydrogen Energy 47(80), 33919–33937 (2022)

    Article  Google Scholar 

  42. Caglar, A., et al.: Effective carbon nanotube supported metal (M = Au, Ag, Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells. Renew. Energy 150, 78–90 (2020)

    Article  Google Scholar 

  43. Hansu, T.A., et al.: Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Mater. Chem. Phy. 239, 122031 (2020)

    Article  Google Scholar 

  44. Caglar, A., H.J.I.J.o.H, E., Kivrak: Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. Int. J. Hydrogen Energy 44(23), 11734–11743 (2019)

    Article  Google Scholar 

  45. Cheng, Q., et al.: Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9), 2917–2925 (2011)

    Article  Google Scholar 

  46. Yan, X., Yu, Y., Yang, X.J.R.A.: Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Mater. 4(48), 24986–24990 (2014)

    Google Scholar 

  47. Abasi, C.Y., Wankasi, D., D.J.A.J, E.: Adsorption study of lead (II) ions on poly (methyl methacrylate) waste material. Asian J. Chem. 30(4), 859–867 (2018)

    Article  Google Scholar 

  48. Fisher, R.A., et al.: Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS J. Solid State Sci. Technol. 2(10), M3170 (2013)

    Article  Google Scholar 

  49. Pan, H., Li, J., Feng, Y.: Carbon nanotubes for supercapacitor. Nanoscale Res. lett. 5, 654–668 (2010)

    Article  Google Scholar 

  50. Thomas, K., et al.: Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J. Optics A: Pure Appl. Optics 10(5), 055303 (2008)

    Article  Google Scholar 

  51. Vernon-Parry, K.: Scanning electron microscopy: an introduction. III-Vs Rev. 13(4), 40–44 (2000)

    Google Scholar 

  52. Yang, Y., et al.: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122(6), 6117–6321 (2022)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabit Horoz.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, Ş., Çağlar, A., AKDEMİR, M. et al. Exploring the Triple Applications of Ag/PMAc-g-CNT Nanocomposites in Enhancing HER, OER and Supercapacitor Performance. Waste Biomass Valor 15, 2781–2792 (2024). https://doi.org/10.1007/s12649-023-02310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02310-5

Keywords

Navigation