Skip to main content
Log in

Neurocardiological differences between musicians and control subjects

  • Original Article – E-LEARNING
  • Published:
Netherlands Heart Journal Aims and scope Submit manuscript

Abstract

Background

Exercise training is beneficial in health and disease. Part of the training effect materialises in the brainstem due to the exercise-associated somatosensory nerve traffic. Because active music making also involves somatosensory nerve traffic, we hypothesised that this will have training effects resembling those of physical exercise.

Methods

We compared two groups of healthy, young subjects between 18 and 30 years: 25 music students (13/12 male/female, group M) and 28 controls (12/16 male/female, group C), peers, who were non-musicians. Measurement sessions to determine resting heart rate, resting blood pressure and baroreflex sensitivity (BRS) were held during morning hours.

Results

Groups M and C did not differ significantly in age (21.4 ± 3.0 vs 21.2 ± 3.1 years), height (1.79 ± 0.11 vs 1.77 ± 0.10 m), weight (68.0 ± 9.1 vs 66.8 ± 10.4 kg), body mass index (21.2 ± 2.5 vs 21.3 ± 2.4 kg∙m−2) and physical exercise volume (39.3 ± 38.8 vs 36.6 ± 23.6 metabolic equivalent hours/week). Group M practised music daily for 1.8 ± 0.7 h. In group M heart rate (65.1 ± 10.6 vs 68.8 ± 8.3 beats/min, trend P =0.08), systolic blood pressure (114.2 ± 8.7 vs 120.3 ± 10.0 mmHg, P = 0.01), diastolic blood pressure (65.0 ± 6.1 vs 71.0 ± 6.2 mmHg, P < 0.01) and mean blood pressure (83.7 ± 6.4 vs 89.4 ± 7.1, P < 0.01) were lower than in group C. BRS in groups M and C was 12.9 ± 6.7 and 11.3 ± 5.8 ms/mmHg, respectively (P = 0.17).

Conclusions

The results of our study suggest that active music making has training effects resembling those of physical exercise training. Our study opens a new perspective, in which active music making, additionally to being an artistic activity, renders concrete health benefits for the musician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pliquett RU, Fasshauer M, Bluher M, et al. Neurohumoral stimulation in type-2-diabetes as an emerging disease concept. Cardiovasc Diabetol. 2004;3:4.

    Article  CAS  Google Scholar 

  2. Hsueh WA, Wyne K. Renin-Angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens (Greenwich). 2011;13:224–37.

    Article  CAS  Google Scholar 

  3. Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.

    Article  CAS  Google Scholar 

  4. Essick EE, Sam F. Cardiac hypertrophy and fibrosis in the metabolic syndrome: a role for aldosterone and the mineralocorticoid receptor. Int J Hypertens. 2011;2011:346985.

    Article  Google Scholar 

  5. Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.

    Article  CAS  Google Scholar 

  6. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107:984–91.

    Article  Google Scholar 

  7. Izzo Jr JL, Gradman AH. Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am. 2004;88:1257–71.

    Article  Google Scholar 

  8. Frenneaux MP. Autonomic changes in patients with heart failure and in post-myocardial infarction patients. Heart. 2004;90:1248–55.

    Article  CAS  Google Scholar 

  9. Gademan MG, Swenne CA, Verwey HF, et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail. 2007;13:294–303.

    Article  Google Scholar 

  10. Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007;34:377–84.

    Article  CAS  Google Scholar 

  11. Michelini LC, Stern JE. Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control. Exp Physiol. 2009;94:947–60.

    Article  CAS  Google Scholar 

  12. Andersson S, Lundeberg T. Acupuncture–from empiricism to science: functional background to acupuncture effects in pain and disease. Med Hypotheses. 1995;45:271–81.

    Article  CAS  Google Scholar 

  13. Thoren P, Floras JS, Hoffmann P, et al. Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc. 1990;22:417–28.

    CAS  PubMed  Google Scholar 

  14. Kaada B, Vik-mo H, Rosland G, et al. Transcutaneous nerve stimulation in patients with coronary arterial disease: haemodynamic and biochemical effects. Eur Heart J. 1990;11:447–53.

    CAS  PubMed  Google Scholar 

  15. Lee HS, Kim JY. Effects of acupuncture on blood pressure and plasma renin activity in two-kidney one clip Goldblatt hypertensive rats. Am J Chin Med. 1994;22:215–9.

    Article  CAS  Google Scholar 

  16. Maeda M, Kachi H, Ichihashi N, et al. The effect of electrical acupuncture-stimulation therapy using thermography and plasma endothelin (ET-1) levels in patients with progressive systemic sclerosis (PSS). J Dermatol Sci. 1998;17:151–5.

    Article  CAS  Google Scholar 

  17. Zhang S, Ye X, Shan Q, et al. Effects of acupuncture on the levels of endothelin, TXB2, and 6-keto-PGF1 alpha in apoplexy patients. J Tradit Chin Med. 1999;19:39–43.

    CAS  PubMed  Google Scholar 

  18. Loaiza LA, Yamaguchi S, Ito M, et al. Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Auton Neurosci. 2002;97:103–9.

    Article  CAS  Google Scholar 

  19. Kaada B, Flatheim E, Woie L. Low-frequency transcutaneous nerve stimulation in mild/moderate hypertension. Clin Physiol. 1991;11:161–8.

    Article  CAS  Google Scholar 

  20. Gademan MGJ, Sun Y, Han L, et al. Rehabilitation: periodic somatosensory stimulation increases arterial baroreflex sensitivity in chronic heart failure patients. Int J Cardiol. 2011;152:237–41.

    Article  Google Scholar 

  21. Frederiks J, Swenne CA, Ghafoerkhan A, et al. Rhythmic sensory stimulation improves fitness by conditioning the autonomic nervous system. Neth Heart J. 2002;10:43–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.

    Article  Google Scholar 

  23. Taylor CE, Atkinson G, Willie CK, et al. Diurnal variation in the mechanical and neural components of the baroreflex. Hypertension. 2011;58:51–6.

    Article  CAS  Google Scholar 

  24. Gademan MG, Van Bommel RJ, Ypenburg C, et al. Biventricular pacing in chronic heart failure acutely facilitates the arterial baroreflex. Am J Physiol Heart Circ Physiol. 2008;295:H755–60.

    Article  CAS  Google Scholar 

  25. Frederiks J, Swenne CA, Ten Voorde BJ, et al. The importance of high-frequency paced breathing in spectral baroreflex sensitivity assessment. J Hypertens. 2000;18:1635–44.

    Article  CAS  Google Scholar 

  26. Swenne CA, Frederiks J, Fischer PH, et al. Noninvasive baroreflex sensitivity assessment in geriatric patients: feasibility, and role of the coherence criterion. Comput Cardiol. 2000;27:45–8.

    Google Scholar 

  27. Van de Vooren H, Gademan MGJ, Haest JCW, et al. Non-invasive baroreflex sensitivity assessment in heart failure patients with frequent episodes of non-sinus rhythm. Comput Cardiol. 2006;33:637–40.

    Google Scholar 

  28. Tanaka M, Sato M, Umehara S, et al. Influence of menstrual cycle on baroreflex control of heart rate: comparison with male volunteers. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1091–7.

    Article  CAS  Google Scholar 

  29. Cervellin G, Lippi G. From music-beat to heart-beat: a journey in the complex interactions between music, brain and heart. Eur J Intern Med. 2011;22:371–4.

    Article  Google Scholar 

  30. Montinaro A. The musical brain: myth and science. World Neurosurg. 2010;73:442–53.

    Article  Google Scholar 

  31. Trappe HJ. The effects of music on the cardiovascular system and cardiovascular health. Heart. 2010;96:1868–71.

    Article  Google Scholar 

  32. Inesta C, Terrados N, Garcia D, et al. Heart rate in professional musicians. J Occup Med Toxicol. 2008;3:16.

    Article  Google Scholar 

  33. Sunderman LF. A study of some physiological differences between musicians and non-musicians; blood-pressure. J Soc Psychol. 1946;23:205–15.

    Article  CAS  Google Scholar 

  34. Valentine E, Evans C. The effects of solo singing, choral singing and swimming on mood and physiological indices. Br J Med Psychol. 2001;74:115–20.

    Article  CAS  Google Scholar 

  35. Clift SM, Hancox G. The perceived benefits of singing: findings from preliminary surveys of a university college choral society. J R Soc Promot Health. 2001;121:248–56.

    Article  CAS  Google Scholar 

  36. Schorr-Lesnick B, Teirstein AS, Brown LK, et al. Pulmonary function in singers and wind-instrument players. Chest. 1985;88:201–5.

    Article  CAS  Google Scholar 

  37. Zanesco A, Antunes E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacol Ther. 2007;114:307–17.

    Article  CAS  Google Scholar 

  38. Pescatello LS, Franklin BA, Fagard R, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  Google Scholar 

  39. Halliwill JR, Taylor JA, Hartwig TD, et al. Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise. Am J Physiol. 1996;270:R420–6.

    CAS  PubMed  Google Scholar 

  40. Tirosh A, Afek A, Rudich A, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension. 2010;56:203–9.

    Article  CAS  Google Scholar 

  41. Bibbins-Domingo K, Pletcher MJ. Blood pressure matters, even during young adulthood. J Am Coll Cardiol. 2011;58:2404–5.

    Article  Google Scholar 

  42. Gray L, Lee IM, Sesso HD, et al. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011;58:2396–403.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mortara Rangoni Europe for providing the ST-Surveyor monitoring system used for recording of the ECG and the continuous noninvasive blood pressure signals for the purpose of later off-line baroreflex evaluation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Swenne.

Additional information

The questions can be answered after the article has been published in print. You have to log in to: www.cvoi.nl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burggraaf, J.L.I., Elffers, T.W., Segeth, F.M. et al. Neurocardiological differences between musicians and control subjects. Neth Heart J 21, 183–188 (2013). https://doi.org/10.1007/s12471-012-0372-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12471-012-0372-9

Keywords

Navigation