Skip to main content
Log in

Hydrophilic and Antibacterial Electrospun Nanofibers from Monofilament Fishing Lines

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Microplastics such as monofilament fishing lines (MFLs) are major pollutants in the marine environment and affect marine life and water quality. To solve this global menace, many researchers have been working on several ways to recycle these wastes and convert them into value-added products such as nanofibers. In this study, we produced novel nanofibers through the electrospinning of a polymeric solution consisting of MFL, hydroxyapatite (HAP), and silver nanoparticles (AgNPs). These fabricated nanofibers were further characterized to study their wettability, surface morphology, surface chemistry, thermal degradation, and antibacterial capability. Results from the incorporation of HAP and AgNPs showed increased fiber diameter and scattered fiber orientation. The addition of 0.4 and 1.5 wt% AgNPs to the nanofibers improved their thermal stabilities for temperatures above 350 °C. The MFL + HAP + 1.5 wt% AgNPs nanofibers showed the best antibacterial performance against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive), with bactericidal efficiencies of 70.5% and 68.6%, respectively. Also, increasing the size of the nanofiber aids cell proliferation. These fabricated nanofibers could be used for biomedical and water purification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon the request.

References

  1. J. Zhu, H. Han, T.T. Ye, F.X. Li, X.L. Wang, J.Y. Yu, D.Q. Wu, Biodegradable and pH sensitive peptide based hydrogel as controlled release system for antibacterial wound dressing application. Molecules 23(12), 3383 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Singh, R.K. Gundampati, K. Mitra, K. Ramesh, M.V. Jagannadham, N. Misra, B. Ray, Enhanced catalytic and antibacterial activities of silver nanoparticles immobilized on poly(N-vinyl pyrrolidone)-grafted graphene oxide. RSC Adv. 5(100), 81994–82004 (2015)

    Article  CAS  Google Scholar 

  3. M. Martí, B. Frígols, B. Salesa, Á. Serrano-Aroca, Calcium alginate/graphene oxide films: reinforced composites able to prevent Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections with no cytotoxicity for human keratinocyte HaCaT cells. Eur. Polym. J. 110, 14–21 (2019)

    Article  Google Scholar 

  4. A.O. Ijaola, D.O. Akamo, F. Damiri, C.J. Akisin, E.A. Bamidele, E.G. Ajiboye, M. Berrada, V.O. Onyenokwe, S.Y. Yang, E. Asmatulu, Polymeric biomaterials for wound healing applications: a comprehensive review. J. Biomater. Sci. Polym. Ed. 33(15), 1998–2050 (2022)

    Article  PubMed  CAS  Google Scholar 

  5. A. Ahmed, L. Xu, J. Yin, M. Wang, F. Khan, M. Ali, High-throughput fabrication of chitosan/poly (ethylene oxide) nanofibers by modified free surface electrospinning. Fibers Polymers 21, 1945–1955 (2020)

    Article  CAS  Google Scholar 

  6. A. Abramova, A. Gedanken, V. Popov, E.H. Ooi, T.J. Mason, E.M. Joyce, J. Beddow, I. Perelshtein, V. Bayazitov, “A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for itsimplementation. Mater Lett 96, 121–124 (2013)

    Article  CAS  Google Scholar 

  7. A.R. Jabur, Antibacterial activity and heavy metal removal efficiency of electrospun medium molecular weight chitosan/nylon-6 nanofibre membranes. Biomed. Mater. 13(1), 015010 (2018)

    Article  Google Scholar 

  8. A. Behboudi, Y. Jafarzadeh, R. Yegani, Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles. J. Environ. Chem. Eng. 6(2), 1764–1773 (2018)

    Article  CAS  Google Scholar 

  9. R. Ahmadi, N. Asadpourchallou, B.K. Kaleji, In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate. Surfaces and Interfaces 24, 101072 (2021)

    Article  CAS  Google Scholar 

  10. K. Chandramouli, B. Suryanarayana, T.A. Babu, V. Raghavendra, D. Parajuli, N. Murali, V. Malapati, T.W. Mammo, P.S.V. Shanmukhi, U.R. Gudla, Synthesis, structural and antibacterial activity of pure, Fe doped, and glucose capped ZnO nanoparticles. Surfaces and Interfaces 26, 101327 (2021)

    Article  CAS  Google Scholar 

  11. M.N. Uddin, F.J. Desai, B. Subeshan, M.M. Rahman, E. Asmatulu, Sustainable atmospheric fog water generator through superhydrophobic electrospun nanocomposite fibers of recycled expanded polystyrene foams. Surfaces and Interfaces 25, 101169 (2021)

    Article  CAS  Google Scholar 

  12. M.H. Hazaraimi, P.S. Goh, M.N. Subramaniam, M. Pandiyan, N.D. Suzaimi, W.J. Lau, A.F. Ismail, Silver doped titania nanotubes incorporated photocatalytic dual layer antibiofouling hollow fiber membrane for palm oil wastewater treatment. J. Environ. Chem. Eng. 9(5), 106192 (2021)

    Article  CAS  Google Scholar 

  13. K. Thakur, S. Kalia, B.S. Kaith, D. Pathania, A. Kumar, P. Thakur, C.E. Knittel, C.L. Schauer, G. Totaro, The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials. J Environ Chem Eng (2016). https://doi.org/10.1016/j.jece.2016.02.032

    Article  Google Scholar 

  14. H. Nosrati, M. Heydari, and M. Khodaei, (2023) “Cerium oxide nanoparticles: Synthesis methods and applications in wound healing,” Mater Today Bio., p.100823,.

  15. N.P.S. Chauhan, “Ceramic-based hybrid nanoparticles in drug delivery. Nanopart Drug Delivery 2, 1743–1752 (2016)

    Google Scholar 

  16. J.E. Martín-Alfonso, A.A. Cuadri, J.M. Franco, Development and characterization of novel fibers based on potato protein/polyethylene oxide through electrospinning. Fibers and Polymers 20, 1586–1593 (2019)

    Article  Google Scholar 

  17. H. Nosrati, M. Heydari, Z. Tootiaei, S. Ganjbar, M. Khodaei, Delivery of antibacterial agents for wound healing applications using polysaccharide-based scaffolds. J Drug Deliv Sci Technol 1, 104516 (2023)

    Article  Google Scholar 

  18. A.O. Ijaola, B. Subeshan, A. Pham, M.N. Uddin, S.Y. Yang, E. Asmatulu, Fabrication, characterization, and In Vitro Cytotoxicity assessment of tri-layered multifunctional scaffold for effective chronic wound healing. Bioeng. 10(10), 1148 (2023)

    CAS  Google Scholar 

  19. M.N. Uddin, F.J. Desai, E. Asmatulu, “Biomimetic electrospun nanocomposite fibers from recycled polystyrene foams exhibiting superhydrophobicity”,. Energy Ecol Environ 5(1), 1–11 (2020)

    Article  Google Scholar 

  20. S. Honarbakhsh, B. Pourdeyhimi, Scaffolds for drug delivery, part I: Electrospun porous poly(lactic acid) and poly(lactic acid)/poly(ethylene oxide) hybrid scaffolds. J. Mater. Sci. 46, 2874–2881 (2011)

    Article  CAS  Google Scholar 

  21. M. Ghorbani, P. Nezhad-Mokhtari, H. Sohrabi, L. Roshangar, Electrospun chitosan/nanocrystalline cellulose-graft-poly(N-vinylcaprolactam) nanofibers as the reinforced scaffold for tissue engineering. J. Mater. Sci. 55(5), 2176–2185 (2020)

    Article  CAS  Google Scholar 

  22. A.O. Ijaola, P.K. Farayibi, E. Asmatulu, Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review. J. Nat. Gas Sci. Eng. 83, 103544 (2020)

    Article  CAS  Google Scholar 

  23. S.P. Miguel, M.P. Ribeiro, P. Coutinho, I.J. Correia, Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 9(5), 183 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  24. H. Nosrati, M. Khodaei, Z. Alizadeh, M. Banitalebi-Dehkordi, Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol. 192, 298–322 (2021)

    Article  PubMed  CAS  Google Scholar 

  25. Z. Mohammadalizadeh, E. Bahremandi-Toloue, S. Karbasi, Synthetic-based blended electrospun scaffolds in tissue engineering applications. J Mater Sci 57(6), 4020 (2022)

    Article  CAS  Google Scholar 

  26. E. Berber, N. Horzum, B. Hazer, M.M. Demir, Solution electrospinning of polypropylene-based fibers and their application in catalysis. Fibers and Polymers 17, 760–768 (2016)

    Article  CAS  Google Scholar 

  27. A.O. Ijaola, D.O. Akamo, A.M. Adekanmi, Q. Saberi, D. Koken, E. Asmatulu, Superhydrophobic and self-cleaning electrospun microfibers from recycled styrofoam. Results in Surfaces and Interfaces 9, 100086 (2022)

    Article  Google Scholar 

  28. R.Y.H. Al-Mezrakchi, An investigation into scalability production of ultra-fine nanofiber using electrospinning systems. Fibers and Polymers 19(1), 105–115 (2018)

    Article  CAS  Google Scholar 

  29. X. Yu, L. Shen, Y. Zhu, X. Li, Y. Yang, X. Wang, M. Zhu, B.S. Hsiao, High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. J. Memb. Sci. 523, 173–184 (2017)

    Article  CAS  Google Scholar 

  30. X. Wang, W.Z. Song, M.H. You, J. Zhang, M. Yu, Z. Fan, S. Ramakrishna, Y.Z. Long, Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 12(8), 8588–8596 (2018)

    Article  PubMed  CAS  Google Scholar 

  31. T.T. Yue, X. Li, X.X. Wang, X. Yan, M. Yu, J.W. Ma, Y. Zhou, S. Ramakrishna, Y.Z. Long, Electrospinning of carboxymethyl chitosan/polyoxyethylene oxide nanofibers for fruit fresh-keeping. Nanoscale Res. Lett. 13(1), 1–8 (2018)

    Article  Google Scholar 

  32. I.I.C. Bates, I.B.S. Carrillo, H. Germain, É. Loranger, B. Chabot, Antibacterial electrospun chitosan-PEO/TEMPO-oxidized cellulose composite for water filtration. J. Environ. Chem. Eng. 9(5), 106204 (2021)

    Article  CAS  Google Scholar 

  33. X. Ma, J. Ge, Y. Li, B. Guo, P.X. Ma, Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering. RSC Adv. 4(26), 13652–13661 (2014)

    Article  CAS  Google Scholar 

  34. H. Li, M. Wang, G.R. Williams, J. Wu, X. Sun, Y. Lv, L.M. Zhu, Electrospun gelatin nanofibers loaded with vitamins A and e as antibacterial wound dressing materials. RSC Adv. 6(55), 50267–50277 (2016)

    Article  CAS  Google Scholar 

  35. M.E. Talukder, K.M.F. Hasan, J. Wang, J. Yao, C. Li, H. Song, Novel fibrin functionalized multilayered electrospun nanofiber membrane for burn wound treatment. J. Mater. Sci. 56(22), 12814–12834 (2021)

    Article  CAS  Google Scholar 

  36. X. Zhang, X. Shi, J.E. Gautrot, T. Peijs, Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites 7(1), 1–34 (2021)

    Article  Google Scholar 

  37. Y.F. Goh, I. Shakir, R. Hussain, Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 48, 3027–3054 (2013)

    Article  CAS  Google Scholar 

  38. M.K. Haider, A. Ullah, M.N. Sarwar, T. Yamaguchi, Q. Wang, S. Ullah, Fabricating antibacterial and antioxidant electrospun hydrophilic polyacrylonitrile nanofibers loaded with agnps by lignin-induced in-situ method. Polymers (Basel) 13(5), 1–20 (2021)

    Article  Google Scholar 

  39. J.Z. Soo, L.C. Chai, B.C. Ang, B.H. Ong, Enhancing the antibacterial performance of titanium dioxide nanofibers by coating with silver nanoparticles. ACS Appl. Nano Mater. 3(6), 5743–5751 (2020)

    Article  CAS  Google Scholar 

  40. R. Li, Z. Cheng, X. Yu, S. Wang, Z. Han, L. Kang, Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Mater. Lett. 254, 206–209 (2019)

    Article  CAS  Google Scholar 

  41. Online available on October 26, 2023.Microplastics: Barely visible, but anything but harmless (oceancare.org)

  42. S. Liang, G. Zhang, J. Min, J. Ding, X. Jiang, Synthesis and antibacterial testing of silver/poly (ether amide) composite nanofibers with ultralow silver content. J. Nanomater. (2014). https://doi.org/10.1155/2014/684251

    Article  Google Scholar 

  43. H.W. Tong, M. Wang, Z.Y. Li, W.W. Lu, Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed. Mater. 5(5), 054111 (2010)

    Article  PubMed  Google Scholar 

  44. M. Sadat-Shojai, M.T. Khorasani, A. Jamshidi, A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 289, 38–47 (2016)

    Article  CAS  Google Scholar 

  45. M.N. Uddin, F.J. Desai, M.M. Rahman, R. Asmatulu, A highly efficient fog harvester of electrospun permanent superhydrophobic-hydrophilic polymer nanocomposite fiber mats. Nanoscale Adv. 2(10), 4627–4638 (2020)

    Article  CAS  Google Scholar 

  46. P.O. Rujitanaroj, N. Pimpha, P. Supaphol, Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. J. Appl. Polym. Sci 116(4), 1967–1976 (2010)

    Article  CAS  Google Scholar 

  47. R. Asmatulu, Impacts of nanoscale inclusions on fire retardancy, thermal stability, and mechanical properties of polymeric PVC nanocomposites. J. Therm. Eng. 3(4), 1308–1318 (2017)

    Article  Google Scholar 

  48. Y. Baddam, A.O. Ijaola, E. Asmatulu, Fabrication of flame-retardant and superhydrophobic electrospun nanofibers. Surfaces and Interfaces 23, 101017 (2021)

    Article  CAS  Google Scholar 

  49. A. Abdal-Hay, H.R. Pant, J.K. Lim, Super-hydrophilic electrospun nylon-6/hydroxyapatite membrane for bone tissue engineering. Eur. Polym. J. 49(6), 1314–1321 (2013)

    Article  CAS  Google Scholar 

  50. P. Chocholata, V. Kulda, J. Dvorakova, M. Supova, M. Zaloudkova, V. Babuska, In situ hydroxyapatite synthesis enhances biocompatibility of pva/ha hydrogels. Int. J. Mol. Sci. 22(17), 9335 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. A. Nikbakht, C. Dehghanian, R. Parichehr, Silane coatings modified with hydroxyapatite nanoparticles to enhance the biocompatibility and corrosion resistance of a magnesium alloy. RSC Adv. 11(42), 26127–26144 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Institute for Aviation Research (NIAR) at Wichita State University (WSU) for their help with SEM and TGA testing. They would also like to thank WSU for funding this research via the Multidisciplinary Research Project Award (MURPA) grant. Furthermore, the authors thank Ms. Robin K. Duhn from Pure Fishing Inc. for providing MFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Asmatulu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaola, A.O., Mohammed, Q.S., Obi, M. et al. Hydrophilic and Antibacterial Electrospun Nanofibers from Monofilament Fishing Lines. Fibers Polym 25, 59–69 (2024). https://doi.org/10.1007/s12221-023-00428-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00428-w

Keywords

Navigation