Skip to main content
Log in

Generalized Gelfand Pairs Associated to m-Step Nilpotent Lie Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let N be a nilpotent Lie group and K a compact subgroup of the automorphism group Aut(N) of N. It is well known that if \((K\ltimes N,K)\) is a Gelfand pair then N is at most 2-step nilpotent Lie group. This notion has been generalized to non-compact groups K. In this work, we exhibit a family \((K_m\ltimes N_m,K_m)\) of generalized Gelfand pairs, where \(N_m\) is a \(m+2\)-step nilpotent Lie group and \(K_m\) is isomorphic to \({\mathbb {R}}^{m+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astengo, F., Di Blasio, B., Ricci, F.: Gelfand transforms of polyradial functions on the Heisenberg group. J. Funct. Anal. 251, 772–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, C., Jenkins, J., Ratcliff, G.: On Gelfand pairs associated with solvable Lie groups. Trans. Am. Math. Soc. 321, 85–116 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Benson, C., Jenkins, J., Ratcliff, G.: Bounded K-spherical function on Heisenberg group. J. Funct. Anal. 105, 409–443 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, C., Jenkins, J., Ratcliff, G.: The orbit method and Gelfand pairs associated with nilpotent Lie groups. J. Geom. Anal. 9, 569–582 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dixmier, J.: Sur les representations unitaires des groupes de Lie nilpotents. III. Can. J. Math. 10, 321–348 (1958)

    Article  MATH  Google Scholar 

  6. Faraut, J.: Distributions sphériques sur les espaces hyperboliques. J. Math. Pures Appl. 58, 369–444 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Fischer, V., Ricci, F., Yakimova, O.: Nilpotent Gelfand pairs and spherical transforms of Schwartz functions III. Isomorphisms between Schwartz spaces under Vinberg condition. arxiv:1210.7962

  8. Gallo, A., Saal, L.: A generalized Gelfand pair attached to a \(3\)-step nilpotent Lie group. J. Fourier Anal. Appl. 26, 62 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Russ. Math. Surv. 17, 53–104 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kobayashi, T.: Multiplicity free representations and visible actions on complex manifolds. Publ. RIMS Kyoto Univ. 41, 497–549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lauret, J.: Gelfand pairs attached to representations of compact Lie groups. Transform. Groups 5, 307–324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mackey, G.W.: Unitary Group Representations in Physics, Probability, and Number Theory. Mathematics Lecture Note series, Benjamin/Cummings Publishing, San Francisco (1978)

    MATH  Google Scholar 

  13. Mokni, K., Thomas, E.G.F.: Paires de Guelfand généralisées associées au groupe d’Heisenberg. J. Lie Theory 8, 325–334 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Ratcliff, G.: Symbols and orbits for \(3\)-step nilpotent Lie groups. J. Funct. Anal. 62, 38–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thomas, E.G.F.: The Theorem of Bochner Schwartz Godement for Generalized Gelfand Pairs. Elsevier, Amsterdam (1984)

    MATH  Google Scholar 

  16. Van Dijk, G.: Group representations on spaces of distributions. Russ. J. Math. Phys. 2, 57–68 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Russ. Math. 56, 1–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to Jacques Faraut for his generous contribution to this work. Also we thank Rocío Díaz Martin for helpful conversations. We wish to thank the referee for suggesting improvements to an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina Campos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the following, we denote by \(E_{i,j}\) the matrix of \(M_{m+3}({\mathbb {R}})\) that has 1 in the (ij) position and 0 elsewhere.

Lemma 1

The map \(\Phi :N_m\rightarrow M_m\) defined by

$$\begin{aligned}&\Phi (s_m,\ldots ,s_1,x,y,t)\\ {}&=\left( \begin{array}{cccccccc} 1&{}\quad 0&{}\quad \ldots &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad (-1)^ms_m\\ x&{}\quad 1&{}\quad \ldots &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad (-1)^{m-1}s_{m-1}+(-1)^{m}s_{m}x\\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots \\ \frac{x^{m-2}}{m-2!}&{}\quad \ldots &{}\quad x&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad s_2-s_3x+\sum \limits _{i=2}^{m-2}s_{2+i}\frac{(-x)^i}{i!}\\ \frac{x^{m-1}}{m-1!}&{}\quad \ldots &{}\quad \frac{x^2}{2!}&{}\quad x&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad -s_1+s_2x-\sum \limits _{i=2}^{m-1}s_{1+i}\frac{(-x)^i}{i!}\\ \frac{x^{m+1}}{m+1!}&{}\quad \ldots &{}\quad \frac{x^4}{4!}&{}\quad \frac{x^3}{3!}&{}\quad \frac{x^2}{2!}&{}\quad 1&{}\quad x&{}\quad t+ \frac{xy}{2}-\sum \limits _{i=1}^ms_i\frac{(-x)^{i+1}}{i+1!}\\ \frac{x^m}{m!}&{}\quad \ldots &{}\quad \frac{x^3}{3!}&{}\quad \frac{x^2}{2!}&{}\quad x&{}\quad 0&{}\quad 1&{}\quad y-s_1x+\sum \limits _{i=2}^ms_i\frac{(-x)^i}{i!}\\ 0&{}\quad \ldots &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1 \end{array}\right) \end{aligned}$$

is an isomorphism of Lie groups.

Proof

The proof is by induction on m. For \((s'_m,s'_{m-1},\ldots ,s'_1,x',y',t')\in N_m\) we set

$$\begin{aligned} X'=\left( \begin{array}{c} x'\\ \frac{x'^2}{2}\\ \vdots \\ \frac{x'^{m-1}}{m-1!}\\ \frac{x'^{m+1}}{m+1!}\\ \frac{x'^m}{m!}\\ 0 \end{array}\right) , \ n'_{m-1}=(s'_{m-1},\ldots ,s'_1,x',y',t'). \end{aligned}$$

We assume that \(\Phi _{m-1}:N_{m-1}\rightarrow M_{m-1}\) is an isomorphism of groups. Since \(s_m\) defines an automorphism on \(M_{m-1}\) and \(s_m\circ \Phi _{m-1}=\Phi _{m-1}\circ s_m\), we have that

$$\begin{aligned} \Phi \left( 0,s_m\cdot n'_{m-1}\right)&=\left( \begin{array}{cc} 1 &{} 0\\ X' &{} \Phi _{m-1}(s_m\cdot (n'_{m-1})) \end{array}\right) \\ \\&=\left( \begin{array}{cc} 1 &{}\quad 0\\ X' &{}\quad s_m\cdot \Phi _{m-1}(n'_{m-1}) \end{array}\right) \\ \\&=\left( \begin{array}{cc} 1 &{}\quad 0\\ X' &{}\quad \Phi _{m-1}(n'_{m-1})+(-1)^{m-1}s_m\left( \begin{array}{cc} 0&{}X' \end{array}\right) \end{array}\right) \end{aligned}$$

where we have used the action of \(s_m\) on \(M_{m-1}\). So, as \(\Phi (s_m,0,\ldots ,0)=I+(-1)^ms_m E_{1,m+3}\), we have that

$$\begin{aligned} \Phi \left( 0,s_m\cdot (s'_{m-1},\ldots ,s'_1,x',y',t')\right) \Phi (s_m,0,\ldots ,0)&=\left( \begin{array}{cc} 1 &{}\quad 0 \cdots 0 \ (-1)^ms_m\\ X' &{}\quad \Phi _{m-1}(n'_{m-1}) \end{array}\right) \nonumber \\&=\Phi (s_m,0,\ldots ,0) \nonumber \\&\quad \times \Phi (0,s'_{m-1}, \ldots ,s'_1,x',y',t'). \end{aligned}$$
(10)

Also, it is easy to see that

$$\begin{aligned}&\Phi (s_m,s_{m-1},\ldots ,s_1,x,y,t)=\Phi (0,s_{m-1},\ldots ,s_1,x,y,t)\Phi (s_m,0,\ldots ,0) \end{aligned}$$
(11)
$$\begin{aligned}&\Phi ((0,s_{m-1},\ldots ,s_1,x,y,t)(0,s'_{m-1},\ldots ,s'_1,x',y',t'))=\Phi (0,s_{m-1},\ldots ,s_1,x,y,t) \nonumber \\ {}&\Phi (0,s'_{m-1},\ldots ,s'_1,x',y',t') \end{aligned}$$
(12)
$$\begin{aligned}&\Phi (s_m+s'_m,0,\ldots ,0)=\Phi (s_m,0,\ldots ,0) \ \Phi (s'_m,0,\ldots ,0). \end{aligned}$$
(13)

So, by definition of semidirect product, (11), (12), (13), and (10), we have that

$$\begin{aligned}&\Phi \left( (s_m,\ldots ,s_1,x,y,t)(s'_m,\ldots ,s'_1,x',y',t')\right) \\&\quad =\Phi (s_m+s'_m,(s_{m-1},\ldots ,s_1,x,y,t)s_m\cdot (s'_{m-1},\ldots ,s'_1,x',y',t'))\\&\quad =\Phi (0,(s_{m-1},\ldots ,s_1,x,y,t)s_m\cdot (s'_{m-1},\ldots ,s'_1,x',y',t')) \ \Phi (s_m+s'_m,0,\ldots ,0)\\&\quad =\Phi (0,s_{m-1},\ldots ,s_1,x,y,t) \ \Phi (0,s_m\cdot (s'_{m-1},\ldots ,s'_1,x',y',t')) \ \Phi (s_m,0,\ldots ,0) \\&\qquad \times \Phi (s'_m,0,\ldots ,0)\\&\quad =\Phi (0,s_{m-1},\ldots ,s_1,x,y,t) \ \Phi (s_m,0,\ldots ,0) \\ {}&\quad \quad \Phi (0,s'_{m-1},\ldots ,s'_1,x',y',t') \ \Phi (s'_m,0,\ldots ,0)\\&\quad =\Phi (s_m,s_{m-1},\ldots ,s_1,x,y,t) \ \Phi (s'_m,s'_{m-1},\ldots ,s'_1,x',y',t'). \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, S., García, J. & Saal, L. Generalized Gelfand Pairs Associated to m-Step Nilpotent Lie Groups. J Geom Anal 33, 54 (2023). https://doi.org/10.1007/s12220-022-01099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01099-4

Keywords

Navigation