Skip to main content
Log in

Biogas Production Through Mono- and Co-digestion of Pineapple Waste and Cow Dung at Different Substrate Ratios

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The current study compares the biogas production via anaerobic co-digestion of pineapple waste and cow dung to mono digestion under mesophilic condition, with the goal of modifying the substrate ratio and increasing the system stability. Five different cow dung to pineapple waste ratios (1:1, 1:2, 1:3, 2:1 and 3:1) were assessed based on volatile solid (VS) contents. The highest biogas and methane yield were obtained at a ratio of 1:3 with 179.08 mL gas/g VS and 142.89 mL CH4/g VS, respectively. When compared to mono digestion of pineapple waste, the co-digestion process improved process stability in terms of C/N ratio, total ammonia nitrogen, VS removal and pH. Biogas refinement using carbon dioxide remover was able to reach high methane percentage while lowering carbon dioxide percentage to below 3%. The kinetic study using modified Gompertz model showed that the co-digestion process had shortened lag phase, and the highest biogas production rate was observed at 12.80 mL/g VS day. This suggests that the co-digestion process could increase biogas production rate, enhance process efficiency and significantly reduce fermentation time. Co-digestion of pineapple waste with cow dung appears to be a promising approach for bioenergy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Arantzazu Valdés G, María Isabel DM, Mercedes Ponce L et al (2021) Potential of industrial pineapple (Ananas comosus (L.) Merrill) by-products as aromatic and antioxidant sources. Antioxidants 10:1–15. https://www.mdpi.com/2076-3921/10/11/1767

  2. Ahmad Zamri MFM, Akhiar A, Mohd Roslan ME et al (2020) Valorisation of organic fraction municipal solid waste via anaerobic co-digestion of Malaysia tropical fruit for biogas production. IOP Conf Ser Earth Environ Sci 476:1–8. https://doi.org/10.1088/1755-1315/476/1/012077

    Article  Google Scholar 

  3. Aili Hamzah AF, Hamzah MH, Che Man H et al (2021) Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy 11:1–27. https://doi.org/10.3390/agronomy11112221

    Article  CAS  Google Scholar 

  4. Zayadi RA (2021) Current outlook of livestock industry in Malaysia and ways towards sustainability. J Sustain Nat Resour 2:1–11

    Google Scholar 

  5. Gupta KK, Aneja KR, Rana D (2016) Current status of cow dung as a bioresource for sustainable development. Bioresour Bioprocess 3:1–11. https://doi.org/10.1186/s40643-016-0105-9

    Article  Google Scholar 

  6. RMK12 (2021) Twelfth Malaysia Plan, 2021–2025. In: Econ. Plan. Unit. https://rmke12.epu.gov.my. Accessed 19 Nov 2021

  7. Hamzah MH, Bowra S, Simmons M, Cox P (2016) The impact of process parameters on the purity and chemical properties of lignin extracted from Miscanthus x giganteus using a modified organosolv method. Eur Biomass Conf Exhibition Proc 1754–1759

  8. Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sustain Energy Rev 79:308–322. https://doi.org/10.1016/j.rser.2017.05.137

    Article  CAS  Google Scholar 

  9. Hagos K, Zong J, Li D et al (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

    Article  CAS  Google Scholar 

  10. Dahunsi SO, Olayanju TMA, Adesulu-Dahunsi AT (2019) Data on optimization of bioconversion of fruit rind of Telfairia occidentalis (Fluted pumpkin) and poultry manure for biogas generation. Chem Data Collect 20:1–9. https://doi.org/10.1016/j.cdc.2019.100192

    Article  CAS  Google Scholar 

  11. Chu CY, Vo TP, Chen TH (2020) A novel of biohythane gaseous fuel production from pineapple peel waste juice in two-stage of continuously stirred anaerobic bioreactors. Fuel 279:1–9. https://doi.org/10.1016/j.fuel.2020.118526

    Article  CAS  Google Scholar 

  12. Dahunsi SO (2019) Liquefaction of pineapple peel: pretreatment and process optimization. Energy 185:1017–1031. https://doi.org/10.1016/j.energy.2019.07.123

    Article  CAS  Google Scholar 

  13. Muenmee S, Prasertboonyai K (2021) Potential biogas production generated by mono- and co-digestion of food waste and fruit waste (durian shell, dragon fruit and pineapple peel) in different mixture ratio under anaerobic condition. Environ Res Eng Manag 77:25–35. https://doi.org/10.5755/j01.erem.77.1.25234

    Article  Google Scholar 

  14. Xie S, Lawlor PG, Frost JP et al (2011) Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresour Technol 102:5728–5733. https://doi.org/10.1016/j.biortech.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  15. Li K, Liu R, Sun C (2015) Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour Technol 198:133–140. https://doi.org/10.1016/j.biortech.2015.08.151

    Article  CAS  PubMed  Google Scholar 

  16. Shen J, Zhao C, Liu Y et al (2019) Biogas production from anaerobic co-digestion of durian shell with chicken, dairy, and pig manures. Energy Convers Manag 198:1–10. https://doi.org/10.1016/j.enconman.2018.06.099

    Article  CAS  Google Scholar 

  17. AiliHamzah AF, Hamzah MH, Ahmad Mazlan FN et al (2020) Anaerobic co-digestion of pineapple wastes with cow dung: effect of different total solid content on bio-methane yield. Adv Agri Food Res J 1:1–12. https://doi.org/10.36877/aafrj.a0000109

    Article  Google Scholar 

  18. Kullavanijaya P, Chavalparit O (2021) Biomethanation of napier grass mono-digestion in single-stage anaerobic completely stirred tank reactors seeded with cow manure and anaerobic sludge. Bioenergy Res 1:1–14. https://doi.org/10.1007/s12155-021-10290-4

    Article  CAS  Google Scholar 

  19. Lee ZS, Chin SY, Cheng CK (2019) An evaluation of subcritical hydrothermal treatment of end-of-pipe palm oil mill effluent. Heliyon 5:1–11. https://doi.org/10.1016/j.heliyon.2019.e01792

    Article  CAS  Google Scholar 

  20. Li K, Liu R, Cui S et al (2018) Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production. Renew Energy 118:335–342. https://doi.org/10.1016/j.renene.2017.11.023

    Article  CAS  Google Scholar 

  21. Akyol Ç, Ozbayram EG, Ince O et al (2016) Anaerobic co-digestion of cow manure and barley: effect of cow manure to barley ratio on methane production and digestion stability. Environ Prog Sustain Energy 35:589–595. https://doi.org/10.1002/ep.12250

    Article  CAS  Google Scholar 

  22. Li D, Liu S, Mi L et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol 189:319–326. https://doi.org/10.1016/j.biortech.2015.04.033

    Article  CAS  PubMed  Google Scholar 

  23. Zinare Mamo T, Dutta A, Jabasingh SA (2019) Start-up of a pilot scale anaerobic reactor for the biogas production from the pineapple processing industries of Belgium. Renew Energy 134:241–246. https://doi.org/10.1016/j.renene.2018.11.058

    Article  CAS  Google Scholar 

  24. Zhang H, Wang L, Dai Z et al (2020) Effect of organic loading, feed-to-inoculum ratio, and pretreatment on the anaerobic digestion of tobacco stalks. Bioresour Technol 298:1–8. https://doi.org/10.1016/j.biortech.2019.122474

    Article  CAS  Google Scholar 

  25. Azevedo A, Gominho J, Duarte E (2021) Performance of anaerobic co-digestion of pig slurry with pineapple (Ananas comosus) bio-waste residues. Waste Biomass Valorization 12:303–311. https://doi.org/10.1007/s12649-020-00959-w

    Article  CAS  Google Scholar 

  26. Elsayed M, Andres Y, Blel W et al (2016) Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers Manag 117:538–547. https://doi.org/10.1016/j.enconman.2016.03.064

    Article  CAS  Google Scholar 

  27. APHA (1998) Standard methods for examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, USA

    Google Scholar 

  28. Nurliyana MY, H’ng PS, Rasmina H et al (2015) Effect of C/N ratio in methane productivity and biodegradability during facultative co-digestion of palm oil mill effluent and empty fruit bunch. Ind Crops Prod 76:409–415. https://doi.org/10.1016/j.indcrop.2015.04.047

    Article  CAS  Google Scholar 

  29. Jin W, Xu X, Yang F et al (2018) Performance enhancement by rumen cultures in anaerobic co-digestion of corn straw with pig manure. Biomass Bioenerg 115:120–129. https://doi.org/10.1016/j.biombioe.2018.05.001

    Article  CAS  Google Scholar 

  30. Kainthola J, Kalamdhad AS, Goud VV (2020) Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renew Energy 149:1352–1359. https://doi.org/10.1016/j.renene.2019.10.124

    Article  CAS  Google Scholar 

  31. Simioni T, Agustini CB, Dettmer A, Gutterres M (2021) Anaerobic co-digestion of tannery wastes and untreated/pretreated oat straw. Bioenergy Res 1:1–13. https://doi.org/10.1007/s12155-021-10285-1

    Article  CAS  Google Scholar 

  32. Dahunsi SO, Ogunwole JO, Owoseni AA et al (2021) Valorization of pineapple peel and poultry manure for clean energy generation. Food Energy Secur 11:1–18. https://doi.org/10.1002/fes3.228

    Article  Google Scholar 

  33. Meegoda J, Li B, Patel K, Wang L (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15:1–16. https://doi.org/10.3390/ijerph15102224

    Article  CAS  Google Scholar 

  34. Anukam A, Mohammadi A, Naqvi M, Granström K (2019) A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes 7:1–19. https://doi.org/10.3390/pr7080504

    Article  CAS  Google Scholar 

  35. Zhang C, Xiao G, Peng L et al (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176. https://doi.org/10.1016/j.biortech.2012.10.138

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Wang P, Yang X et al (2021) Process performance and microbial communities in anaerobic co-digestion of sewage sludge and food waste with a lower range of carbon/nitrogen ratio. Bioenergy Res 1:1–11. https://doi.org/10.1007/s12155-021-10357-2

    Article  CAS  Google Scholar 

  37. Ofomatah AC, Ugwu KE, Ani JU (2021) Biogas production and storage from pig dung co-digested with pineapple peel. IOP Conf Ser Earth Environ Sci 730:1–10. https://doi.org/10.1088/1755-1315/730/1/012004

    Article  Google Scholar 

  38. Bi S, Hong X, Yang H et al (2020) Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste. Renew Energy 150:213–220. https://doi.org/10.1016/j.renene.2019.12.091

    Article  CAS  Google Scholar 

  39. Borth PLB, Perin JKH, Torrecilhas AR et al (2021) Biochemical methane potential of food and garden waste co-digestion with variation in solid content and inoculum:substrate ratio. J Mater Cycles Waste Manag 23:1974–1983. https://doi.org/10.1007/S10163-021-01270-Z/TABLES/9

    Article  CAS  Google Scholar 

  40. Yusof TRT, Rahman NA, Ariff AB, Man HC (2019) Evaluation of hydrogen and methane production from co-digestion of chicken manure and food waste. Polish J Environ Stud 28:3003–3014. https://doi.org/10.15244/pjoes/86222

    Article  CAS  Google Scholar 

  41. Prabhu MS, Mutnuri S (2016) Anaerobic co-digestion of sewage sludge and food waste. Waste Manag Res 34:307–315. https://doi.org/10.1177/0734242X16628976

    Article  CAS  PubMed  Google Scholar 

  42. McPhail SJ, Cigolotti V, Moreno A (2012) Fuel cells in the waste-to-energy chain. Springer Lond Lond. https://doi.org/10.1007/978-1-4471-2369-9

    Article  Google Scholar 

  43. Bhatia SK, Joo H-SS, Yang Y-HH (2018) Biowaste-to-bioenergy using biological methods – a mini-review. Energy Convers Manag 177:640–660. https://doi.org/10.1016/j.enconman.2018.09.090

    Article  CAS  Google Scholar 

  44. Font-Palma C (2019) Methods for the treatment of cattle manure—a review. C-J Carbon Res 5:1–20. https://doi.org/10.3390/c5020027

    Article  CAS  Google Scholar 

  45. Park S, Yoon YM, Han SK et al (2017) Effect of hydrothermal pre-treatment (HTP) on pmament of the solubilization, physical properties, and biogas production through anaerobic digestion. Waste Manag 64:327–332. https://doi.org/10.1016/j.wasman.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  46. Kainthola J, Kalamdhad AS, Goud VV, Goel R (2019) Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour Technol 286:1–9. https://doi.org/10.1016/j.biortech.2019.121368

    Article  CAS  Google Scholar 

  47. Barua VB, Kalamdhad AS (2018) Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 217:91–97. https://doi.org/10.1016/j.fuel.2017.12.074

    Article  CAS  Google Scholar 

  48. Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag 48:492–502. https://doi.org/10.1016/j.wasman.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  49. Panigrahi S, Sharma HB, Dubey BK (2020) Anaerobic co-digestion of food waste with pretreated yard waste: a comparative study of methane production, kinetic modeling and energy balance. J Clean Prod 243:1–9. https://doi.org/10.1016/j.jclepro.2019.118480

    Article  CAS  Google Scholar 

  50. Şenol H, Erşan M, Görgün E (2020) Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel 271:1–12. https://doi.org/10.1016/j.fuel.2020.117585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support and technical facilities from Department of Biological and Agricultural Engineering, Department of Chemical and Environmental Engineering, Smart Farming Technology Research Centre, Faculty of Engineering, Universiti Putra Malaysia and Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia.

Funding

This study was supported by the Fundamental Research Grant Scheme (Ref. No: FRGS/1/2021/TK0/UPM/02/28) awarded by the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Muhammad Hazwan Hamzah, Adila Fazliyana Aili Hamzah and Hasfalina Che Man; formal analysis, Adila Fazliyana Aili Hamzah; investigation, Adila Fazliyana Aili Hamzah; methodology, Adila Fazliyana Aili Hamzah, Muhammad Hazwan Hamzah, Nur Syakina Jamali, Shamsul Izhar Siajam and Pau Loke Show; supervision, Muhammad Hazwan Hamzah, Hasfalina Che Man, Nur Syakina Jamali, Shamsul Izhar Siajam and Pau Loke Show; validation, Muhammad Hazwan Hamzah, Hasfalina Che Man and Nur Syakina Jamali; writing—original draft, Adila Fazliyana Aili Hamzah and Muhammad Hazwan Hamzah; writing—review and editing, Hasfalina Che Man, Nur Syakina Jamali, Shamsul Izhar Siajam and Pau Loke Show. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Muhammad Hazwan Hamzah.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzah, A.F.A., Hamzah, M.H., Man, H.C. et al. Biogas Production Through Mono- and Co-digestion of Pineapple Waste and Cow Dung at Different Substrate Ratios. Bioenerg. Res. 17, 1179–1190 (2024). https://doi.org/10.1007/s12155-022-10478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10478-2

Keywords

Navigation