Skip to main content

Advertisement

Log in

Uncertainties and CTV to PTV margins quantitative assessment using cone-beam CT technique in clinical application for prostate, and head and neck irradiation tumours

  • Research Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the magnitude of systematic and random errors from a subset of 100 prostate and 26 head and neck (H&N) cancer patients treated with conventional conformal radiotherapy and using image-guided radiotherapy (IGRT). After treatment, the uncertainties involved and the CTV to PTV margin were evaluated.

Material and methods

An Elekta Synergy® linear accelerator was used, taking advantage of 3D on-board computed tomography. IGRT with no-action level (NAL) protocol was applied, reporting the 3D translation and rotation corrections. A statistical study was performed to analyse systematic, random and interobserver uncertainties, and, finally, to obtain the CTV to PTV margins.

Results

The H&N patients’ uncertainties found were smaller than those of prostate patients. The CTV to PTV margins assessed, following the guidelines found in the literature, in the three dimensions of space (right-left, superior-inferior, anterior-posterior) were (5.3, 3.5, 3.2) mm for H&N and (7.3, 7.0, 9.0) mm for prostate cancer treatments.

Conclusions

It was found that assessing all the involved uncertainties within radiation treatments was very revealing; their quality improves using IGRT techniques and performing extensive data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization (2008) The World Health Report 2008. Primary Health Care. World Health Organization

  2. Murphy MJ, Balter J, Balter S et al (2007) The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys 34:4041–4063

    Article  PubMed  Google Scholar 

  3. Lizuain MC, Capuz A, Crispín V et al (2008) La radioterapia guiada por la imagen. Grupo de Radioterapia Guiada por la Imagen de la SEFM. Rev Fís Méd 9:113–126

    Google Scholar 

  4. Juan-Senabre XJ, Ferrer-Albiach C, Rodríguez-Cordón M et al (2009) Retroperitoneal tumour radiotherapy: clinical improvements using kilovoltage cone beam computed tomography. Clin Transl Oncol 11:253–256

    Article  PubMed  Google Scholar 

  5. International Commission on Radiation Units and Measurements (1993) ICRU Report 50. Prescribing, recording, and reporting photon beam therapy. ICRU, Bethesda, MD

    Google Scholar 

  6. International Commission on Radiation Units and Measurements (1999) ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU, Bethesda, MD

    Google Scholar 

  7. Rodríguez Cordón M, Ferrer Albiach C (2009) Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for imageguided radiotherapy. Clin Transl Oncol 11: 511–517

    Article  PubMed  Google Scholar 

  8. De Neve W, Vandenheuvel F, Debeukeleer M et al (1992) Routine clinical online portal imaging followed by immediate field adjustment using a tele-controlled patient couch. Radiother Oncol 24:45–54

    Article  PubMed  Google Scholar 

  9. Ezz A, Munro P, Porter AT et al (1992) Daily monitoring and correction of radiation-field placement using a video-based portal imaging system-a pilot study. Int J Radiat Oncol Biol Phys 22:159–165

    Article  PubMed  CAS  Google Scholar 

  10. Gildersleve J, Dearnaley DP, Evans PM et al (1994) A randomized trial of patient repositioning during radiotherapy using a megavoltage imaging system. Radiother Oncol 31:161–168

    Article  PubMed  CAS  Google Scholar 

  11. Van de Steene J, Van den Heuvel F, Bel A et al (1998) Electronic portal imaging with on-line correction of setup error in thoracic irradiation: clinical evaluation. Int J Radiat Oncol Biol Phys 40:967–976

    Article  PubMed  Google Scholar 

  12. Stroom JC, Olofsen-van Acht MJJ, Quint S et al (2000) On-line set-up corrections during radiotherapy of patients with gynecologic tumors. Int J Radiat Oncol Biol Phys 46:499–506

    Article  PubMed  CAS  Google Scholar 

  13. Pisani L, Lockman D, Jaffray D et al (2000) Setup error in radiotherapy: on line correction using electronic kilovoltage and megavoltage radiographs. Int J Radiat Oncol Biol Phys 47:825–839

    Article  PubMed  CAS  Google Scholar 

  14. de Boer HJC, Heijmen BJM (2001) A protocol for the reduction of systematic patient setup errors with minimal portal imaging workload. Int J Radiat Oncol Biol Phys 50:1350–1365

    Article  PubMed  Google Scholar 

  15. de Boer HJC, Heijmen BJM (2002) A new approach to off-line setup corrections: combining safety with minimum workload. Med Phys 29:1998–2012

    Article  PubMed  Google Scholar 

  16. de Boer HJC, van Os MJ, Jansen PP, Heijmen BJM (2005) Application of the No Action Level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. Int J Radiat Oncol Biol Phys 61:969–983

    Article  PubMed  Google Scholar 

  17. van Herk M, Remeijer P, Rash C, Lebesque JV (2000) The probability of correct target dosage: Dose-population histograms for deriving treatments margins in radiotherapy. Int J Radiat Onc Biol Phys 47:1121–1135

    Article  Google Scholar 

  18. Stroom JC, Heijmen BJM (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83

    Article  PubMed  Google Scholar 

  19. Yan D, Lockman D, Martinez A et al (2005) Computed tomography guided management of interfractional patient variation. Semin Radiat Oncol 15:168–179

    Article  PubMed  Google Scholar 

  20. Wu Q, Lockman D, Wong J, Yan D (2007) Effect of the first day correction on systematic setup error reduction. 34:1789–1796

    Google Scholar 

  21. van Herk M, Remeijer P, Rash C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatments margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    Article  PubMed  Google Scholar 

  22. Stroom JC, Heijmen BJM (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83

    Article  PubMed  Google Scholar 

  23. Yan D, Lockman D, Martinez A et al (2005) Computed tomography guided management of interfractional patient variation. Semin Radiat Oncol 15:168–179

    Article  PubMed  Google Scholar 

  24. Wu Q, Lockman D, Wong J, Yan D (2007) Effect of the first day correction on systematic setup error reduction. Med Phys 34:1789–1796

    Article  PubMed  Google Scholar 

  25. Moiseenko V, Liu M, Kristensen S et al (2007) Effect of bladder filing on doses to prostate and organs at risk: a treatment planning study. J Appl Clin Med Phys 8:55–68

    Google Scholar 

  26. Hurkmans CW, Remeijer P, Lebesque JV, Mijhneer BJ (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 28:105–120

    Article  Google Scholar 

  27. Ross CC, Patel AA (2009) Influence of patient size and prostate volume on setup variability in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 75. Procedings of the 51st Annual ASTRO Meeting

  28. van der Heide UA, Kotte ANTJ, Dehnad H et al (2007) Analysis of fiducial marker-position verification in the external beam radiotherapy of patients with prostate cancer. Radiat Oncol 82: 38–45

    Article  Google Scholar 

  29. Nijkamp J, Pos FJ, Nuver TT et al (2008) Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. Int J Radiat Oncol Biol Phys 70:75–82

    Article  PubMed  Google Scholar 

  30. Bylund KC, Bayouth JE, Smith MC et al (2008) Analysis of interfraction prostate motion using megavoltage cone beam computed tomography. Int J Radiat Oncol Biol Phys 72:949–956

    Article  PubMed  Google Scholar 

  31. Sevillano Martínez D, García Vicente F, Zapatero Laborda A et al (2008) Estudio del empleo de semillas de oro en la verificación del tratamiento de cáncer de próstata. Rev Fís Méd 9:105–112

    Google Scholar 

  32. Meijer GJ, de Klerk J, Bzdusek K et al (2008) What CTV-To-PTV margins should be applied for prostate irradiation? Four-dimensional quantitative assessment using model-based deformable image registration techniques. Int J Radiat Oncol Biol Phys 72:1416–1425

    Article  PubMed  Google Scholar 

  33. Dawson LA, Katherine M, Franssena E, Mortona G (1998) Target position variability throughout prostate radiotherapy. Int J Radiat Oncol Biol Phys 42:1155–1161

    Article  PubMed  CAS  Google Scholar 

  34. Rugaard Poulsen P, Muren LP, Høyer M (2007) Residual set-up errors and margins in on-line image-guided prostate localization in radiotherapy. Radiother Oncol 85:201–206

    Article  Google Scholar 

  35. Pérez-Romasanta LA, Lozano-Martín E, Velasco-Jiménez J et al (2009) CTV to PTV margins for prostate irradiation. Three-dimensional quantitative assessment of interfraction uncertainties using portal imaging and serial CT scans. Clin Transl Oncol 11:615–621

    Article  PubMed  Google Scholar 

  36. Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295

    Article  PubMed  Google Scholar 

  37. Litzenberg DW, Balter JM, Hadley SW et al (2006) Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys 65:548–553

    Article  PubMed  Google Scholar 

  38. Alasti H, Petric MP, Catton CN, Warde PR (2001) Portal imaging for evaluation of daily on-line setup errors and off-line motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 49:869–884

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ferrer-Albiach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juan-Senabre, X.J., López-Tarjuelo, J., Conde-Moreno, A. et al. Uncertainties and CTV to PTV margins quantitative assessment using cone-beam CT technique in clinical application for prostate, and head and neck irradiation tumours. Clin Transl Oncol 13, 819–825 (2011). https://doi.org/10.1007/s12094-011-0740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0740-8

Keywords

Navigation