Skip to main content

Advertisement

Log in

Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain slice preparations are widely used for research in neuroscience. However, a high-quality preparation is essential and there is no consensus regarding stable parameters that can be used to define the status of the brain slice preparation after its collection at different time points. Thus, it is critical to fully characterize the experimental conditions for ex vivo studies using brain slices for electrophysiological recording. In this study, we used a multiplatform (LC-MS and GC-MS) untargeted metabolomics-based approach to shed light on the metabolome and lipidome changes taking place at different time intervals during the brain slice preparation process. We have found significant modifications in the levels of 300 compounds, including several lipid classes and their derivatives, as well as metabolites involved in the GABAergic pathway and the TCA cycle. All these preparation-dependent changes in the brain biochemistry related to the time interval should be taken into consideration for future studies to facilitate non-biased interpretations of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon request.

Abbreviations

ARA:

arachidonic acid

Cer:

ceramides

CV:

coefficient of variation

DAG:

diradylglycerols

DHA:

docosahexaenoic acid

ESI:

electrospray ionization

FbI:

find by ion

GABA:

gamma-aminobutyric acid

GC-MS:

gas chromatography-mass spectrometry

GPLs:

glycerophospholipids

h:

hour

HMDB:

human metabolome database

IS:

internal standard

LC-MS:

liquid chromatography-mass spectrometry

LPC:

lysoglycerophosphocholines

LPE:

lysoglycerophosphoethanolamines

MAG:

monoradylglycerols

MFE:

molecular feature extraction

min:

minutes

MVDA:

multivariate data analysis

NIST:

National Institute of Standards and Technology

NMDA:

N-methyl-d-aspartate

NMDG:

N-methyl-d-glucamine

ns:

not significant

OPLS-DA:

orthogonal partial least square-discriminant analysis

PC:

glycerophosphocholines

PCA:

principal component analysis

PE:

glycerophosphoethanolamines

PI:

glycerophosphoinositols

PLS-DA:

partial least square-discriminant analysis

PS:

glycerophosphoserine

PUFA:

polyunsaturated fatty acid

QCs:

quality controls

QC-SVRC:

quality control-support vector regression

QTOF:

quadrupole time-of-flight

RFE:

recursive feature extraction

RT:

retention time

RTL:

retention time lock

SD:

standard deviation

SEM:

standard error of mean

SM:

sphingomyelins

TAG:

triradylglycerols

TIC:

total ion chromatogram

TCA:

tricarboxylic acid cycle

UVDA:

univariate data analysis

VIP:

variable influence on projection

References

  1. Yamamoto C, McIlwain H (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem 13(12):1333–1343

    CAS  PubMed  Google Scholar 

  2. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886):1654–1664

    CAS  PubMed  Google Scholar 

  3. Cho S, Wood A, Bowlby M (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5(1):19–33

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Babiloni C, Blinowska K, Bonanni L, Cichocki A, de Haan W, del Percio C, Dubois B, Escudero J et al (2020) What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 85:58–73

    PubMed  Google Scholar 

  5. Varela C, Llano DA, Theyel BB (2011) An introduction to in vitro slice approaches for the study of neuronal circuitry. Neuromethods 65:103–1250

  6. Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899

    CAS  PubMed  Google Scholar 

  7. Stein LR, Zorumski CF, Izumi Y (2017) Dissection method affects electrophysiological properties of hippocampal slices. Oruen: CNS Jl 3(2):94–101

    Google Scholar 

  8. Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48

    PubMed  PubMed Central  Google Scholar 

  9. Ivanov A, Zilberter Y (2011) Critical state of energy metabolism in brain slices: the principal role of oxygen delivery and energy substrates in shaping neuronal activity. Front Neuroenerg 3:9

    CAS  Google Scholar 

  10. Siklos L et al (1997) Intracellular calcium redistribution accompanies changes in total tissue Na+, K+ and water during the first two hours of in vitro incubation of hippocampal slices. Neuroscience 79(4):1013–1022

    CAS  PubMed  Google Scholar 

  11. Whittingham TS, Lust WD, Christakis DA, Passonneau JV (1984) Metabolic stability of hippocampal slice preparations during prolonged incubation. J Neurochem 43(3):689–696

    CAS  PubMed  Google Scholar 

  12. Schurr A, Reid KH, Tseng MT, Edmonds HL Jr (1984) The stability of the hippocampal slice preparation: an electrophysiological and ultrastructural analysis. Brain Res 297(2):357–362

    CAS  PubMed  Google Scholar 

  13. Kirov SA, Petrak LJ, Fiala JC, Harris KM (2004) Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127(1):69–80

    CAS  PubMed  Google Scholar 

  14. Trivino-Paredes JS, Nahirney PC, Pinar C, Grandes P, Christie BR (2019) Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. J Neurophysiol 122(3):958–969

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465(1):90–103

    PubMed  Google Scholar 

  16. Buskila Y et al (2014) Extending the viability of acute brain slices. Sci Rep 4:5309

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grøndahl TØ, Langmoen IA (1993) Epileptogenic effect of antibiotic drugs. J Neurosurg 78(6):938–943

    PubMed  Google Scholar 

  18. Hertz L (2012) Metabolic studies in brain slices–past, present, and future. Front Pharmacol 3:26

    PubMed  PubMed Central  Google Scholar 

  19. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E (2018) Preparation of acute brain slices using an optimized N-methyl-D-glucamine protective recovery method. J Vis Exp (132):53825. https://doi.org/10.3791/53825

  20. Gonzalez-Riano C, Tapia-González S, García A, Muñoz A, DeFelipe J, Barbas C (2017) Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Struct and Funct 222(6):2831–2853

  21. Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C (2019) Metabolomic study of hibernating syrian hamster brains: in search of neuroprotective agents. J Proteome Res 18(3):1175–1190

    CAS  PubMed  Google Scholar 

  22. Dudzik D, Barbas-Bernardos C, García A, Barbas C (2017). Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal 147:149–173

  23. Si-Hung L, Causon TJ, Hann S (2017) Comparison of fully wettable RPLC stationary phases for LC-MS-based cellular metabolomics. Electrophoresis 38(18):2287–2295

    PubMed  Google Scholar 

  24. Kuligowski J, Sánchez-Illana Á, Sanjuán-Herráez D, Vento M, Quintás G (2015) Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 140(22):7810–7817

    CAS  PubMed  Google Scholar 

  25. de la Fuente AG et al (2018) Knowledge-based metabolite annotation tool: CEU mass mediator. J Pharm Biomed Anal 154:138–149

    Google Scholar 

  26. Gil-De-La-Fuente A et al (2019) CEU mass mediator 3.0: a metabolite annotation tool. J Proteome Res 18(2):797–802

    CAS  PubMed  Google Scholar 

  27. Han X (2016) Lipidomics: Comprehensive mass spectrometry of lipids. John Wiley & Sons Inc., Hoboken, New Jersey

  28. Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, Yamada Y, Tada I, Bonini P et al (2020) MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. https://doi.org/10.1101/2020.02.11.944900

  29. Mohamed A, Molendijk J, Hill MM (2020) lipidr: a software tool for data mining and analysis of lipidomics datasets. J Proteome Res 19:2890–2897

    CAS  PubMed  Google Scholar 

  30. Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22(2):154–166

    CAS  PubMed  Google Scholar 

  31. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    CAS  PubMed  Google Scholar 

  32. Czéh B, Varga ZKK, Henningsen K, Kovács GL, Miseta A, Wiborg O (2015) Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 25(3):393–405

    PubMed  Google Scholar 

  33. Roth FC, Draguhn A (2012) GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 2012:1–12

    Google Scholar 

  34. Molnár E (2016) Investigation of neurotransmitter receptors in brain slices using cell surface biotinylation. In: Luján R, Ciruela F (Eds). Receptor and Ion Channel Detection in the Brain. Neuromethods, Humana Press, New York, pp 39-48

  35. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473

    CAS  PubMed  Google Scholar 

  36. Zhang Y, Cudmore RH, Lin DT, Linden DJ, Huganir RL (2015) Visualization of NMDA receptor–dependent AMPA receptor synaptic plasticity in vivo. Nat Neurosci 18(3):402–407

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Facecchia K, Fochesato LA, Ray SD, Stohs SJ, Pandey S (2011) Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies. J Toxicol 2011:1–12

    Google Scholar 

  38. Mederos S, González-Arias C, Perea G (2018) Astrocyte–neuron networks: a multilane highway of signaling for homeostatic brain function. Front Synaptic Neurosci 10:45

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103

    PubMed  Google Scholar 

  40. Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM (2019) Energy dynamics in the brain: contributions of astrocytes to metabolism and pH homeostasis. Front Neurosci 13:1301

    PubMed  PubMed Central  Google Scholar 

  41. Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol 586(5):1337–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallagher CN, Carpenter KLH, Grice P, Howe DJ, Mason A, Timofeev I, Menon DK, Kirkpatrick PJ et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132(10):2839–2849

    PubMed  Google Scholar 

  44. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99(1):949–1045

    CAS  PubMed  Google Scholar 

  45. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–1308

    CAS  PubMed  Google Scholar 

  47. Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21(1):117–127

    CAS  PubMed  Google Scholar 

  48. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310

    CAS  PubMed  Google Scholar 

  49. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. In Int Rev Neurobiol 22:1–45

  50. Schousboe A et al (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol 4:102

    Google Scholar 

  51. Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, Zafar S, Kamran SKS et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):26

    PubMed  PubMed Central  Google Scholar 

  52. Buskila Y, Bellot-Saez A, Kékesi O, Cameron M, Morley J (2020) Extending the life span of acute neuronal tissue for imaging and electrophysiological studies. In: Wright N (ed.) Basic Neurobiology Techniques, Neuromethods. Humana, New York,  pp 235–259

  53. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci 96(23):13409–13414

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Coyle JT, Balu D, Wolosker H (2020) D-serine, the shape-shifting NMDA receptor co-agonist. Neurochem Res 45(6):1344–1353

  55. Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138(12):2515–2520

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Attwell D, Miller B, Sarantis M (1993) Arachidonic acid as a messenger in the central nervous system. Sem Neurosci 5(3):159–169

  57. Leaf A (2001) The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n − 3 polyunsaturated fatty acids: Heart and brain. Lipids 36(1):S107–S110

    CAS  PubMed  Google Scholar 

  58. Voskuyl RA, Vreugdenhil M, Kang JX, Leaf A (1998) Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. Eur J Pharmacol 341(2-3):145–152

    CAS  PubMed  Google Scholar 

  59. Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52

    PubMed  PubMed Central  Google Scholar 

  60. Cravatt BF et al (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268(5216):1506–1509

    CAS  PubMed  Google Scholar 

  61. Hiley CR, Hoi PM (2007) Oleamide: a fatty acid amide signaling molecule in the cardiovascular system? Cardiovasc Drug Rev 25(1):46–60

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nick Guthrie for his excellent text editing, and Vanesa Alonso for her technical assistance.

Funding

This work was supported by grants from the following entities: FEDER Program 2014-2020 of the Community of Madrid (Ref.S2017/BMD3684), Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0066, Spain) and the Spanish “Ministerio de Ciencia, Innovación y Universidades” (grant PGC2018-094307-B-I00 to J.D and RTI2018-095166-B-I00 to C.B; the Cajal Blue Brain Project [the Spanish partner of the Blue Brain Project initiative from EPFL, Switzerland to J.D]; the PhD fellowship program from MINECO (Spain) (BES-2017-080303) to CG-A; and MINECO grant (BFU2016-75107-P, PID2019-106579RB-I00) and CSIC PIE grant (2019AEP152) to G.P.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Silvia Tapia-González, Gertrudis Perea, and Javier DeFelipe. Data acquisition: Carolina Gonzalez-Riaño and Coral Barbas. Data analysis: Carolina Gonzalez-Riaño and Coral Barbas. Data interpretation: Carolina Gonzalez-Riaño, Gertrudis Perea, Silvia Tapia-González, Candela González-Arias, Javier DeFelipe, and Coral Barbas. Supervision: Coral Barbas and Javier DeFelipe. Writing—original draft: Carolina Gonzalez-Riaño, Gertrudis Perea, and Javier DeFelipe. Writing—review and editing: Carolina Gonzalez-Riaño, Gertrudis Perea, Silvia Tapia-González, Candela González-Arias, Javier DeFelipe, and Coral Barbas.

Corresponding author

Correspondence to Coral Barbas.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

All experimental protocols involving the use of animals were performed in accordance with recommendations for the proper care and use of laboratory animals and under the authorization of the regulations and policies governing the care and use of laboratory animals from the Cajal Institute (Madrid, Spain), in accordance with the European Commission (2010/63/EU), FELASA, and ARRIVE guidelines. Special care was taken to minimize animal suffering and to reduce the number of animals used to the minimum required for statistical accuracy.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1

Supplementary Methods. Table 1 Metabolites found as statistically significant at any of the comparisons performed at different time points. (PDF 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Riano, C., Tapia-González, S., Perea, G. et al. Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach. Mol Neurobiol 58, 3224–3237 (2021). https://doi.org/10.1007/s12035-020-02264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02264-y

Keywords

Navigation