Skip to main content

Advertisement

Log in

Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Wnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. doi:10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205. doi:10.1016/j.cell.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  3. Van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  CAS  PubMed  Google Scholar 

  4. Gómez-Orte E, Sáenz-Narciso B, Moreno S, Cabello J (2013) Multiple functions of the noncanonical Wnt pathway. Trends Genet 29:545–553. doi:10.1016/j.tig.2013.06.003

    Article  PubMed  Google Scholar 

  5. Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38:439–446

    Article  CAS  PubMed  Google Scholar 

  6. Antara D (2011) Wnt / Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin Shanghai 43:745–756. doi:10.1093/abbs/gmr079

    Article  Google Scholar 

  7. Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23:265–277. doi:10.1101/gad.1760809

    Article  CAS  PubMed  Google Scholar 

  8. Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 12:779–792. doi:10.1016/j.devcel.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Bergami P, Lau E, Ronai Z (2010) Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 10:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13:767–779. doi:10.1038/nrm3470

    Article  CAS  PubMed  Google Scholar 

  11. Grumolato L, Liu G, Mong P, et al (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev.

  12. Xavier CP, Melikova M, Chuman Y et al (2014) Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/β-catenin signaling. Cell Signal 26:94–101. doi:10.1016/j.cellsig.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  13. Bengoa-Vergniory N, Gorroño-Etxebarria I, González Salazar I, Kypta RM (2014) A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem Cells 32:3196–3208. doi:10.1002/stem.1807

    Article  CAS  PubMed  Google Scholar 

  14. Sato A, Yamamoto H, Sakane H et al (2010) Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J 29:41–54. doi:10.1038/emboj.2009.322

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Thekdi N, Smallwood PM et al (2002) Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci 22:8563–8573

    CAS  PubMed  Google Scholar 

  16. Stuebner S, Faus-Kessler T, Fischer T et al (2010) Fzd3 and Fzd6 deficiency results in a severe midbrain morphogenesis defect. Dev Dyn 239:246–260. doi:10.1002/dvdy.22127

    CAS  PubMed  Google Scholar 

  17. Zhao C, Avilés C, Abel R a et al (2005) Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 132:2917–2927. doi:10.1242/dev.01871

    Article  CAS  PubMed  Google Scholar 

  18. L’Episcopo F, Tirolo C, Nuccio T et al (2010) Glia as a turning point in the therapeutic strategy of Parkinsons disease. CNS Neurol Disord - Drug Targets 9:349–372

    Article  PubMed  Google Scholar 

  19. Castelo-Branco G, Andersson ER, Minina E et al (2010) Delayed dopaminergic neuron differentiation in Lrp6 mutant mice. Dev Dyn 239:211–221. doi:10.1002/dvdy.22094

    CAS  PubMed  Google Scholar 

  20. Delaunay D, Cortay V, Patti D et al (2014) Mitotic spindle asymmetry: a Wnt/PCP-regulated mechanism generating asymmetrical division in cortical precursors. Cell Rep 6:400–414. doi:10.1016/j.celrep.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  21. Ho H-YH, Susman MW, Bikoff JB et al (2012) Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci 109:4044–4051. doi:10.1073/pnas.1200421109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119:97–108. doi:10.1016/j.cell.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  23. Endo M, Doi R, Nishita M, Minami Y (2011) Ror family receptor tyrosine kinases regulate the maintenance of neural progenitor cells in the developing neocortex. J Cell Sci 125:2017–2029. doi:10.1242/jcs.097782

    Article  Google Scholar 

  24. Lyu J, Yamamoto V, Lu W (2008) Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell 15:773–780. doi:10.1016/j.devcel.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Ohkawara B, Niehrs C (2011) An ATF2-based luciferase reporter to monitor non-canonical Wnt signaling in Xenopus embryos. Dev Dyn 240:188–194

    Article  PubMed  Google Scholar 

  26. Li X, Green MR (1996) Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes Dev 10:517–527

    Article  CAS  PubMed  Google Scholar 

  27. Shibamoto S, Higano K, Takada R et al (1998) Cytoskeletal reorganization by soluble Wnt-3a protein signalling. Genes Cells 3:659–670. doi:10.1046/j.1365-2443.1998.00221.x

    Article  CAS  PubMed  Google Scholar 

  28. Nishita M, Itsukushima S, Nomachi A et al (2010) Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol Cell Biol 30:3610–3619. doi:10.1128/MCB.00177-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen AE, Ginty DD, Fan C-M (2005) Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433:317–322. doi:10.1038/nature03126

    Article  CAS  PubMed  Google Scholar 

  30. Bilic J, Huang Y-L, Davidson G et al (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 80-(316):1619–1622. doi:10.1126/science.1137065

    Article  Google Scholar 

  31. Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 11:213–223. doi:10.1016/j.devcel.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  32. Liang J, Fu Y, Cruciat C-M et al (2011) Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation. Mol Cell Biol 31:2577–2590. doi:10.1128/MCB.05103-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oishi I, Suzuki H, Onishi N et al (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654. doi:10.1046/j.1365-2443.2003.00662.x

    Article  CAS  PubMed  Google Scholar 

  34. Caricasole A, Ferraro T, Iacovelli L et al (2003) Functional characterization of WNT7A signaling in PC12 cells: interaction with a FZD5-LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 278:37024–37031. doi:10.1074/jbc.M300191200

    Article  CAS  PubMed  Google Scholar 

  35. Guo H, Nagy T, Pierce M (2014) Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apcmin/+ mice through altered Wnt receptor signaling. J Biol Chem 289:31534–31549. doi:10.1074/jbc.M114.602680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paganoni S, Ferreira A (2005) Neurite extension in central neurons: a novel role for the receptor tyrosine kinases Ror1 and Ror2. J Cell Sci 118:433–446. doi:10.1242/jcs.01622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paganoni S, Bernstein J, Ferreira A (2010) Ror1-Ror2 complexes modulate synapse formation in hippocampal neurons. Neuroscience 165:1261–1274. doi:10.1016/j.neuroscience.2009.11.056

    Article  CAS  PubMed  Google Scholar 

  38. Ciani L, Boyle KA, Dickins E, et al (2011) Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca2+/Calmodulin-dependent protein kinase II. Proc. Natl. Acad. Sci.

  39. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42. doi:10.1038/nn1374

    Article  CAS  PubMed  Google Scholar 

  40. Billiard J, Way DS, Seestaller-Wehr LM et al (2005) The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol Endocrinol 19:90–101. doi:10.1210/me.2004-0153

    Article  CAS  PubMed  Google Scholar 

  41. Janda CY, Waghray D, Levin AM et al (2012) Structural basis of Wnt recognition by frizzled. Science 80-(337):59–64. doi:10.1126/science.1222879

    Article  Google Scholar 

  42. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634. doi:10.1242/jcs.00623

    Article  CAS  PubMed  Google Scholar 

  43. Hojjat-Farsangi M, Moshfegh A, Daneshmanesh AH et al (2014) The receptor tyrosine kinase ROR1 - an oncofetal antigen for targeted cancer therapy. Semin Cancer Biol:1–11. doi:10.1016/j.semcancer.2014.07.005

  44. Zhang S, Chen L, Cui B et al (2012) ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One 7:e31127. doi:10.1371/journal.pone.0031127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamagata K, Li X, Ikegaki S et al (2012) Dissection of Wnt5a-Ror2 signaling leading to matrix metalloproteinase (MMP-13) expression. J Biol Chem 287:1588–1599. doi:10.1074/jbc.M111.315127

    Article  CAS  PubMed  Google Scholar 

  46. Slater PG, Ramirez VT, Gonzalez-Billault C et al (2013) Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons. PLoS One 8:e78892. doi:10.1371/journal.pone.0078892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sahores M, Gibb A, Salinas PC (2010) Frizzled-5, a receptor for the synaptic organizer Wnt7a, regulates activity-mediated synaptogenesis. Development 137:2215–2225. doi:10.1242/dev.046722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was facilitated by funding from the Spanish Ministry of Education and Science (SAF2014-51966-R, IJCI-2014-21255) and the Government of the Autonomous Community of the Basque Country Departments of Education, Industry, Tourism and Trade (Elkartek) and Innovation Technology. We thank Maria Vivanco for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kypta.

Electronic supplementary material

ESM 1

(DOCX 141 kb)

ESM 2

(DOCX 42 kb)

ESM 3

(DOCX 313 kb)

ESM 4

(DOCX 288 kb)

ESM 5

(DOCX 306 kb)

ESM 6

(DOCX 269 kb)

ESM 7

(DOCX 39 kb)

ESM 8

(DOCX 366 kb)

ESM 9

(DOCX 19 kb)

ESM 10

(DOCX 18 kb)

ESM 11

(DOCX 306 kb)

ESM 12

(DOCX 172 kb)

ESM 13

(DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengoa-Vergniory, N., Gorroño-Etxebarria, I., López-Sánchez, I. et al. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells. Mol Neurobiol 54, 6213–6224 (2017). https://doi.org/10.1007/s12035-016-0151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0151-5

Keywords

Navigation