Skip to main content

Advertisement

Log in

Absence of multiple atypical chemokine binders (ACBs) and the presence of VEGF and MMP-9 predict axillary lymph node metastasis in early breast carcinomas

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the frequency of axillary lymph node (ALN) metastasis of early breast cancers by evaluating the status of DARC, D6 and CCX-CKR and the levels of VEGF and MMP-9. The status of DARC, D6 and CCX-CKR and the levels VEGF and MMP-9 were evaluated in ALN– (n = 130) and ALN + (n = 88) patients with T1 breast cancer by immunohistochemical staining. For ALN, likelihood ratio χ 2-tests were used for univariate analysis and logistic regression for multivariate analysis. Univariate analysis identified the nuclear grade, VEGF and MMP-9 expression and absence of DARC, D6 and CCX-CKR as predictors of ALN involvement. When combining the three receptors (DARC, D6 and CCX-CKR) together, tumors with multiple absence (multi-absence, any two or three loss) had a higher likelihood of being ALN positive than non-multi-absence (coexpression of any two or three) tumors (56.2 vs. 27.9 %, P < 0.001). The final multivariate logistic regression revealed nuclear grade, VEGF, MMP-9 and non-multi-absence versus multi-absence to be independent predictors of ALN involvement; the odds ratio (OR) and 95 % CI for non-multi-absence tumors versus multi-absence were 0.469 (0.233–0.943). Multi-absence was also associated with the involvement of four or more lymph nodes among ALN + tumors. Moreover, tumors with multi-absence had higher VEGF (78.1 vs. 50.0 %, P < 0.001) and MMP-9 (81.3 vs. 36.1 %, P < 0.001) expression than non-multi-absence tumors. Our data highlight that the absence of DARC, D6 and CCX-CKR in combination, which is associated with higher VEGF and MMP-9 expression, predicts the presence and extent of ALN metastasis in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Michaelson JS, Silverstein M, Sgroi D, Cheongsiatmoy JA, Taghian A, Powell S, Hughes K, Comegno A, Tanabe KK, Smith B. The effect of tumor size and lymph node status on breast carcinoma lethality. Cancer. 2003;98(10):2133–43.

    Article  PubMed  Google Scholar 

  2. Hayes DF. Prognostic and predictive factors revisited. Breast. 2005;14(6):493–9.

    Article  PubMed  Google Scholar 

  3. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18(7):1133–44.

    Article  PubMed  CAS  Google Scholar 

  4. Henry NL, Hayes DF. Uses and abuses of tumor markers in the diagnosis, monitoring, and treatment of primary and metastatic breast cancer. Oncologist. 2006;11(6):541–52.

    Article  PubMed  CAS  Google Scholar 

  5. Kulbe H, Levinson NR, Balkwill F, Wilson JL. The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol. 2004;48(5–6):489–96.

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    Article  PubMed  CAS  Google Scholar 

  7. Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA. 2006;103(33):12493–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Schmid MC, Varner JA. Myeloid cell trafficking and tumor angiogenesis. Cancer Lett. 2007;250(1):1–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Peiper SC, Wang ZX, Neote K, Martin AW, Showell HJ, Conklyn MJ, Ogborne K, Hadley TJ, Lu ZH, Hesselgesser J, et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med. 1995;181(4):1311–7.

    Article  PubMed  CAS  Google Scholar 

  10. Nibbs RJ, Wylie SM, Pragnell IB, Graham GJ. Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1alpha receptors, CCR-1, CCR-3, and CCR-5. J Biol Chem. 1997;272(19):12495–504.

    Article  PubMed  CAS  Google Scholar 

  11. Gosling J, Dairaghi DJ, Wang Y, Hanley M, Talbot D, Miao Z, Schall TJ. Cutting edge: identification of a novel chemokine receptor that binds dendritic cell- and T cell-active chemokines including ELC, SLC, and TECK. J Immunol. 2000;164(6):2851–6.

    Article  PubMed  CAS  Google Scholar 

  12. Wang J, Ou ZL, Hou YF, Luo JM, Shen ZZ, Ding J, Shao ZM. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene. 2006;25(54):7201–11.

    Article  PubMed  CAS  Google Scholar 

  13. Wu FY, Ou ZL, Feng LY, Luo JM, Wang LP, Shen ZZ, Shao ZM. Chemokine decoy receptor d6 plays a negative role in human breast cancer. Mol Cancer Res. 2008;6(8):1276–88.

    Article  PubMed  CAS  Google Scholar 

  14. Feng LY, Ou ZL, Wu FY, Shen ZZ, Shao ZM. Involvement of a Novel Chemokine Decoy Receptor CCX-CKR in Breast Cancer Growth, Metastasis and Patient Survival. Clin Cancer Res. 2009;15(9):2962–70.

    Article  PubMed  CAS  Google Scholar 

  15. Ferreira FO, Ribeiro FL, Batista AC, Leles CR, de Cassia Goncalves Alencar R, Silva TA. Association of CCL2 with lymph node metastasis and macrophage infiltration in oral cavity and lip squamous cell carcinoma. Tumour Biol. 2008;29(2):114–21.

    Article  PubMed  CAS  Google Scholar 

  16. Lebrecht A, Grimm C, Lantzsch T, Ludwig E, Hefler L, Ulbrich E, Koelbl H. Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol. 2004;25(1–2):14–7.

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Seethala RR, Zhang Q, Gooding W, van Waes C, Hasegawa H, Ferris RL. Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer: implications for therapy. J Natl Cancer Inst. 2008;100(7):502–12.

    Article  PubMed  CAS  Google Scholar 

  18. Wu Y, Li YY, Matsushima K, Baba T, Mukaida N. CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol. 2008;181(9):6384–93.

    Article  PubMed  CAS  Google Scholar 

  19. Chuang JY, Yang WH, Chen HT, Huang CY, Tan TW, Lin YT, Hsu CJ, Fong YC, Tang CH. CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol. 2009;220(2):418–26.

    Article  PubMed  CAS  Google Scholar 

  20. Yuecheng Y, Xiaoyan X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev. 2007;16(5):430–5.

    Article  PubMed  Google Scholar 

  21. Aalinkeel R, Nair MP, Sufrin G, Mahajan SD, Chadha KC, Chawda RP, Schwartz SA. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res. 2004;64(15):5311–21.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu YM, Webster SJ, Flower D, Woll PJ. Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer. 2004;91(11):1970–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Yu KD, Di GH, Wu J, Lu JS, Shen KW, Shen ZZ, Shao ZM. Development and trends of surgical modalities for breast cancer in China: a review of 16-year data. Ann Surg Oncol. 2007;14(9):2502–9.

    Article  PubMed  Google Scholar 

  24. Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29(4):577–80.

    Article  PubMed  CAS  Google Scholar 

  25. Yin WJ, Lu JS, Di GH, Lin YP, Zhou LH, Liu GY, Wu J, Shen KW, Han QX, Shen ZZ, et al. Clinicopathological features of the triple-negative tumors in Chinese breast cancer patients. Breast Cancer Res Treat. 2009;115(2):325–33.

    Article  PubMed  Google Scholar 

  26. Li HC, Cao DC, Liu Y, Hou YF, Wu J, Lu JS, Di GH, Liu G, Li FM, Ou ZL, et al. Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat. 2004;88(1):75–85.

    Article  PubMed  CAS  Google Scholar 

  27. Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S. Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol. 2004;99(9):1667–74.

    Article  PubMed  CAS  Google Scholar 

  28. Tanaka K, Kurebayashi J, Sohda M, Nomura T, Prabhakar U, Yan L, Sonoo H. The expression of monocyte chemotactic protein-1 in papillary thyroid carcinoma is correlated with lymph node metastasis and tumor recurrence. Thyroid. 2009;19(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  29. Ahmed OI, Adel AM, Diab DR, Gobran NS. Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients. Egypt J Immunol. 2006;13(2):61–8.

    PubMed  Google Scholar 

  30. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Konieczny D, Kustrzeba-Wojcicka I, Terlecki G, Banas T. Elevation of circulating interleukin-8 is related to lymph node and distant metastases in esophageal squamous cell carcinomas–implication for clinical evaluation of cancer patient. Cytokine. 2008;41(3):232–9.

    Article  PubMed  CAS  Google Scholar 

  31. Snoussi K, Mahfoudh W, Bouaouina N, Ahmed SB, Helal AN, Chouchane L. Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Hum Immunol. 2006;67(1–2):13–21.

    Article  PubMed  CAS  Google Scholar 

  32. Shang ZJ, Liu K, Shao Z. Expression of chemokine receptor CCR7 is associated with cervical lymph node metastasis of oral squamous cell carcinoma. Oral Oncol. 2009;45(6):480–5.

    Article  PubMed  CAS  Google Scholar 

  33. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, Inoue H, Mori M. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 2002;62(10):2937–41.

    PubMed  CAS  Google Scholar 

  34. Maekawa S, Iwasaki A, Shirakusa T, Kawakami T, Yanagisawa J, Tanaka T, Shibaguchi H, Kinugasa T, Kuroki M. Association between the expression of chemokine receptors CCR7 and CXCR3, and lymph node metastatic potential in lung adenocarcinoma. Oncol Rep. 2008;19(6):1461–8.

    PubMed  CAS  Google Scholar 

  35. Koizumi K, Kozawa Y, Ohashi Y, Nakamura ES, Aozuka Y, Sakurai H, Ichiki K, Doki Y, Misaki T, Saiki I. CCL21 promotes the migration and adhesion of highly lymph node metastatic human non-small cell lung cancer Lu-99 in vitro. Oncol Rep. 2007;17(6):1511–6.

    PubMed  CAS  Google Scholar 

  36. Ding Y, Shimada Y, Maeda M, Kawabe A, Kaganoi J, Komoto I, Hashimoto Y, Miyake M, Hashida H, Imamura M. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res. 2003;9(9):3406–12.

    PubMed  CAS  Google Scholar 

  37. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst. 2001;93(21):1638–43.

    Article  PubMed  CAS  Google Scholar 

  38. Liu R, Pu DM, Cheng YX, Yin L. Expressions of receptor-binding cancer antigen expressed on SiSo cells, vascular endothelial growth factor, and matrix metalloproteinase-9 in cervical carcinoma and correlation thereof with the invasion and metastasis of the cancerous tissues. Zhonghua Yi Xue Za Zhi. 2007;87(19):1326–9.

    PubMed  CAS  Google Scholar 

  39. Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, Tsuneyama K, Takano Y. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26(5A):3579–83.

    PubMed  CAS  Google Scholar 

  40. Addison CL, Belperio JA, Burdick MD, Strieter RM. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer. 2004;4:28.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer. 2006;42(6):768–78.

    Article  PubMed  CAS  Google Scholar 

  42. Benelli R, Lorusso G, Albini A, Noonan DM. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des. 2006;12(24):3101–15.

    Article  PubMed  CAS  Google Scholar 

  43. Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol. 2004;25(4):201–9.

    Article  PubMed  CAS  Google Scholar 

  44. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6(8):3282–9.

    PubMed  CAS  Google Scholar 

  45. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, McCauley LK. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 2009;69(4):1685–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem. 2009;284(10):6038–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 2002;62(4):1093–102.

    PubMed  CAS  Google Scholar 

  48. Kitadai Y, Haruma K, Mukaida N, Ohmoto Y, Matsutani N, Yasui W, Yamamoto S, Sumii K, Kajiyama G, Fidler IJ, et al. Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Cancer Res. 2000;6(7):2735–40.

    PubMed  CAS  Google Scholar 

  49. Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia. 2001;3(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  50. Redondo-Munoz J. Jose Terol M, Garcia-Marco JA, Garcia-Pardo A: matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration. Blood. 2008;111(1):383–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the studied women for their willingness to cooperate with our study. National Basic Research Program of China Grant 2006CB910501; National Natural Science Foundation of China Grants 30371580, 30570695, and 30572109; and Shanghai Science and Technology Committee Grants 03J14019, 04ZR14027, 06DJ14004, and 06DZ19504; Key Medical Project of Health Bureau of Chongqing (2012-1-125), P. R. China.

Conflict of interest

The authors have stated that they have no conflicts interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Min Shao.

Additional information

Xiao-Hua Zeng and Zhou-Luo Ou have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, XH., Ou, ZL., Yu, KD. et al. Absence of multiple atypical chemokine binders (ACBs) and the presence of VEGF and MMP-9 predict axillary lymph node metastasis in early breast carcinomas. Med Oncol 31, 145 (2014). https://doi.org/10.1007/s12032-014-0145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0145-y

Keywords

Navigation