Skip to main content
Log in

Comparison of Gene Expression Profile Between Tumor Tissue and Adjacent Non-tumor Tissue in Patients with Gastric Gastrointestinal Stromal Tumor (GIST)

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GISTs) are defined as spindle cell and/or epithelioid tumors originated from interstitial Cajal cells or precursors in the digestive tract. This study was conducted to identify genes differing in expression between the gastric tumors and the adjacent non-cancerous mucosas in patients with primary gastric GIST. The gene expression profile was determined by using oligonucleotide-based DNA microarrays and further validated by quantitative real-time PCR. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was performed to predict signaling pathways involved in gastric GIST. Our data showed that the expression levels of 957 genes (RAB39B, member RAS oncogene family; VCAN, versican; etc.) were higher and that of 526 genes (CXCL14, chemokine C-X-C motif ligand 14; MTUS1, microtubule-associated tumor suppressor 1; etc.) were lower in the gastric tumor tissues as compared with normal gastric tissues. Results from KEGG pathway analysis revealed that the differentially expressed genes were enriched into 16 signaling transduction pathways, including Hedeghog and Wnt signaling pathways. Our study may provide basis for identification of novel biomarkers associated with primary gastric GIST pathogenesis and for exploration of underlying mechanisms involved in this gastric sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miettinen, M., & Lasota, J. (2006). Gastrointestinal stromal tumors: Review on morphology, molecular pathology, prognosis, and differential diagnosis. Archives of Pathology and Laboratory Medicine, 2006(130), 1466–1478.

    Google Scholar 

  2. Hirota, S., Isozaki, K., Moriyama, Y., Hashimoto, K., Nishida, T., Ishiguro, S., et al. (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998(279), 577–580.

    Article  Google Scholar 

  3. Vadakara, J., & von Mehren, M. (2013). Gastrointestinal stromal tumors: Management of metastatic disease and emerging therapies. Hematology/oncology Clinics of North America, 2013(27), 905–920.

    Article  Google Scholar 

  4. Debiec-Rychter, M., Cools, J., Dumez, H., Sciot, R., Stul, M., Mentens, N., et al. (2005). Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology, 2005(128), 270–279.

    Article  Google Scholar 

  5. Heller, M. J. (2002). DNA microarray technology: Devices, systems, and applications. Annual Review of Biomedical Engineering, 2002(4), 129–153.

    Article  Google Scholar 

  6. Russo, G., Zegar, C., & Giordano, A. (2003). Advantages and limitations of microarray technology in human cancer. Oncogene, 2003(22), 6497–6507.

    Article  Google Scholar 

  7. Mischel, P. S., Cloughesy, T. F., & Nelson, S. F. (2004). DNA-microarray analysis of brain cancer: Molecular classification for therapy. Nature Reviews Neuroscience, 2004(5), 782–792.

    Article  Google Scholar 

  8. Terashima, M., Maesawa, C., Oyama, K., Ohtani, S., Akiyama, Y., Ogasawara, S., et al. (2005). Gene expression profiles in human gastric cancer: Expression of maspin correlates with lymph node metastasis. British Journal of Cancer, 2005(92), 1130–1136.

    Article  Google Scholar 

  9. Milde-Langosch, K., Karn, T., Schmidt, M., zu Eulenburg, C., Oliveira-Ferrer, L., Wirtz, R. M., et al. (2014). Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Research and Treatment, 2014(145), 295–305.

    Article  Google Scholar 

  10. Koh, S. S., Opel, M. L., Wei, J. P., Yau, K., Shah, R., Gorre, M. E., et al. (2009). Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Modern Pathology, 2009(22), 538–546.

    Article  Google Scholar 

  11. Hur, K., Lee, H. J., Woo, J. H., Kim, J. H., & Yang, H. K. (2010). Gene expression profiling of human gastrointestinal stromal tumors according to its malignant potential. Digestive Diseases and Sciences, 2010(55), 2561–2567.

    Article  Google Scholar 

  12. Setoguchi, T., Kikuchi, H., Yamamoto, M., Baba, M., Ohta, M., Kamiya, K., et al. (2011). Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal stromal tumors. Cancer Science, 2011(102), 883–889.

    Article  Google Scholar 

  13. Liu, N., Liu, X., Zhou, N., Wu, Q., Zhou, L., & Li, Q. (2014). Gene expression profiling and bioinformatics analysis of gastric carcinoma. Experimental and Molecular Pathology, 2014(96), 361–366.

    Article  Google Scholar 

  14. Arne, G., Kristiansson, E., Nerman, O., Kindblom, L. G., Ahlman, H., Nilsson, B., & Nilsson, O. (2011). Expression profiling of GIST: CD133 is associated with KIT exon 11 mutations, gastric location and poor prognosis. International Journal of Cancer, 2011(129), 1149–1161.

    Article  Google Scholar 

  15. Yeung, K. Y., & Ruzzo, W. L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics, 2001(17), 763–774.

    Article  Google Scholar 

  16. Corless, C. L. (2014). Gastrointestinal stromal tumors: What do we know now? Modern Pathology, 7(Suppl 1), S1–16.

    Article  Google Scholar 

  17. Corless, C. L., Barnett, C. M., & Heinrich, M. C. (2011). Gastrointestinal stromal tumours: Origin and molecular oncology. Nature Reviews Cancer, 2011(11), 865–878.

    Google Scholar 

  18. Yamaguchi, U., Nakayama, R., Honda, K., Ichikawa, H., Hasegawa, T., Shitashige, M., et al. (2008). Distinct gene expression-defined classes of gastrointestinal stromal tumor. Journal of Clinical Oncology, 2008(26), 4100–4108.

    Article  Google Scholar 

  19. Godwin, A. K. (2011). Bench to bedside and back again: Personalizing treatment for patients with GIST. Molecular Cancer Therapeutics, 2011(10), 2026–2027.

    Article  Google Scholar 

  20. Atay, S., Banskota, S., Crow, J., Sethi, G., Rink, L., & Godwin, A. K. (2014). Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2014(111), 711–716.

    Article  Google Scholar 

  21. Schmukler, E., Kloog, Y., & Pinkas-Kramarski, R. (2014). Ras and autophagy in cancer development and therapy. Oncotarget, 2014(5), 577–586.

    Google Scholar 

  22. Lin, Z., Zhang, C., Zhang, M., Xu, D., Fang, Y., Zhou, Z., et al. (2014). Targeting cadherin-17 inactivates Ras/Raf/MEK/ERK signaling and inhibits cell proliferation in gastric cancer. PLoS One, 2014(9), e85296.

    Article  Google Scholar 

  23. Liu, Y., Wang, Z., Li, H., Wu, Z., Wei, F., & Wang, H. (2013). Role of the ERas gene in gastric cancer cells. Oncology Reports, 2013(30), 50–56.

    Google Scholar 

  24. Zhang, Z., Zhang, J., Miao, L., Liu, K., Yang, S., Pan, C., & Jiao, B. (2012). Interleukin-11 promotes the progress of gastric carcinoma via abnormally expressed versican. International Journal of Biological Sciences, 2012(8), 383–393.

    Article  Google Scholar 

  25. Miyake, M., Lawton, A., Goodison, S., Urquidi, V., & Rosser, C. J. (2014). Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathology, Research and Practice, 2014(210), 74–78.

    Article  Google Scholar 

  26. Hsu, Y. L., Hou, M. F., Kuo, P. L., Huang, Y. F., & Tsai, E. M. (2013). Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway. Oncogene, 2013(32), 4436–4447.

    Article  Google Scholar 

  27. Kee, J. Y., Ito, A., Hojo, S., Hashimoto, I., Igarashi, Y., Tsukada, K., et al. (2013). Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncology Reports, 2013(29), 975–982.

    Google Scholar 

  28. Wang, W., Huang, P., Zhang, L., Wei, J., Xie, Q., Sun, Q., et al. (2013). Antitumor efficacy of C-X-C motif chemokine ligand 14 in hepatocellular carcinoma in vitro and in vivo. Cancer Science, 2013(104), 1523–1531.

    Article  Google Scholar 

  29. Hu, C., Lin, F., Zhu, G., Xue, X., Ding, Y., Zhao, Z., et al. (2013). Abnormal hypermethylation of promoter region downregulates chemokine CXC ligand 14 expression in gastric cancer. International Journal of Oncology, 2013(43), 1487–1494.

    Google Scholar 

  30. Li, X., Liu, H., Yu, T., Dong, Z., Tang, L., & Sun, X. (2014). Loss of MTUS1 in gastric cancer promotes tumor growth and metastasis. Neoplasma, 2014(61), 128–135.

    Article  Google Scholar 

  31. Pelczar, P., Zibat, A., van Dop, W. A., Heijmans, J., Bleckmann, A., Gruber, W., et al. (2013). Inactivation of Patched1 in mice leads to development of gastrointestinal stromal-like tumors that express Pdgfralpha but not kit. Gastroenterology, 144, 134–144 e6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Oshima, H., Oguma, K., Du, Y. C., & Oshima, M. (2009). Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Science, 2009(100), 1779–1785.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, Y., Zhao, Y., Bao, C. et al. Comparison of Gene Expression Profile Between Tumor Tissue and Adjacent Non-tumor Tissue in Patients with Gastric Gastrointestinal Stromal Tumor (GIST). Cell Biochem Biophys 72, 571–578 (2015). https://doi.org/10.1007/s12013-014-0504-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0504-5

Keywords

Navigation