Skip to main content

Advertisement

Log in

Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE)

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The current trend of shifting to food naturalness has prompted food industries to switch from synthetic to natural colorants. Concurrently, there is a spike in interest concerning the extraction of pigments from natural sources using non-conventional extraction techniques as the latter are environmental-friendly and sustainable compared to traditional methods. Microwave-assisted extraction (MAE) is one of the emerging technologies that has been reported to be effective in the recovery of bioactive compounds from a plethora of natural sources because of its ability to expeditiously heat the extraction matrix, leading to rapid product recovery. This review focuses on the voluminous demand for natural colorants, their limitations, and potential food applications. Also, this review emphasizes the underlying principle and mechanism of MAE, as well as studies that unveil the efficacy and suitability of the technique for the recovery of pigments. Hence, given that natural pigments are susceptible to natural degradation, MAE is a promising technology for enhanced pigment yield and stability. In addition, recent trends such as technology integration and novel extraction solvents have considerably widened the scope and versatility of MAE as a greener extraction method. Furthermore, when coupled with MAE, waste valorization and further exploration of novel pigment sources (such as algae and other microorganisms) present thrust areas of research concerning the global sustainable development goals (SDGs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Álvarez, A., Poejo, J., Matias, A. A., Duarte, C. M. M., Cocero, M. J., & Mato, R. B. (2017). Microwave pre-treatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food and Bioproducts Processing, 106, 162–170. https://doi.org/10.1016/j.fbp.2017.09.007

    Article  CAS  Google Scholar 

  • Arruda, H. S., Silva, E. K., Peixoto Araujo, N. M., Pereira, G. A., Pastore, G. M., & Marostica Junior, M. R. (2021). Anthocyanins recovered from agri-food by-products using innovative processes: Trends, challenges, and perspectives for their application in food systems. Molecules, 26(9), 2632. https://doi.org/10.3390/molecules26092632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awolu, O., & Oladeji, O. (2021). natural plant pigments and derivatives in functional foods developments. Eurasian Journal of Food Science and Technology, 5(1), 25–40. https://dergipark.org.tr/tr/download/article-file/1528968

  • Balaraman, H., Selvasembian, R., Rangarajan, V., & Rathnasamy, S. (2021). Sustainable and green engineering insights on deep eutectic solvents toward the extraction of nutraceuticals. ACS Sustainable Chemistry & Engineering, 9(34), 11290–11313. https://doi.org/10.1021/acssuschemeng.1c03034

    Article  CAS  Google Scholar 

  • Balaraman, H. B., Sivasubramanian, A., & Rathnasamy, S. K. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-phycoerythrin from porphyrium cruentium. Bioresource Technology, 336, 125357. https://doi.org/10.1016/j.biortech.2021.125357

  • Bertoia, M., Rimm, E., Mukamal, K., Hu, F., Willett, W., & Cassidy, A. (2016). Dietary flavonoid intake and weight maintenance: Three prospective cohorts of 124 086 US men and women followed for up to 24 years. BMJ, i17. https://doi.org/10.1136/bmj.i17

  • Bora, P., Das, P., Bhattacharyya, R., & Barooah, M. S. (2019). Biocolour: The natural way of colouring food. Journal of Pharmacognosy and Phytochemistry, 8(3): 3663–3668. https://www.phytojournal.com/archives/2019/vol8issue3/PartBB/8-3-505-353.pdf

  • Boukerche, H., Malki, F., Saidji, N., Ghaliaoui, N., Bensalem, A., & Mokrane, H. (2023). Combination of ultrasound, microwave and conventional extraction techniques for roselle (Hibiscus sabdariffa. L.) total anthocyanins and phenolics recovery: Effect on antioxidant and structural properties. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04029-8

  • Cardoso-Ugarte, G. A., Sosa-Morales, M. E., Ballard, T., Liceaga, A., & San Martín-González, M. F. (2014). Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT - Food Science and Technology, 59(1), 276–282. https://doi.org/10.1016/j.lwt.2014.05.025

    Article  CAS  Google Scholar 

  • Chan, C.-H., Yusoff, R., & Ngoh, G.-C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001

    Article  CAS  Google Scholar 

  • Chatragadda, R., & Dufossé, L. (2021). Ecological and biotechnological aspects of pigmented microbes: A way forward in development of food and pharmaceutical grade pigments. Microorganisms, 9(3), 637. https://doi.org/10.3390/microorganisms9030637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, H. M., Koutsidis, G., Lodge, J. K., Ashor, A. W., Siervo, M., & Lara, J. (2019). Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Critical Reviews in Food Science and Nutrition, 59(1), 141–158. https://doi.org/10.1080/10408398.2017.1362630

    Article  CAS  PubMed  Google Scholar 

  • Chizoba Ekezie, F.-G., Sun, D.-W., Han, Z., & Cheng, J.-H. (2018). Corrigendum to “Microwave assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments” [Trends Food Sci. Technol. 67 (2017) 58–69]. Trends in Food Science & Technology, 75, 243. https://doi.org/10.1016/j.tifs.2018.03.017

  • Connolly, J. (2018). [Infographic] Colors that influence food sales. Jenn David Design. Retrieved January 1, 2023, from https://jenndavid.com/colors-that-influence-food-sales-infographic/#:~:mtext=Red%20and%20yellow%20are%20the,reason%E2%80%94because%20it%20is%20effective

  • da Rocha, C. B., & Noreña, C. P. Z. (2020). Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. International Journal of Food Engineering, 16(1–2). https://doi.org/10.1515/ijfe-2019-0191

  • Damayanti, A., Triwibowo, B., Megawati, M., Azhari, M., & Fadriana, S. A. (2021). Optimization of anthocyanin extraction from cockspur coral (Erythrina Crista-Galli L.) petals with microwave-assisted extraction (MAE) using response surface methodology. ASEAN Journal of Chemical Engineering, 21(2), 143. https://doi.org/10.22146/ajche.63393

  • Delazar, A., Nahar, Dr L., Hamedeyazdan, S., & Sarker, S. (2012). Microwave-assisted extraction in natural products isolation, Methods in molecular biology (Clifton, N. J.). https://doi.org/10.1007/978-1-61779-624-1_5

  • Di Renzo, L., Gualtieri, P., & De Lorenzo, A. (2021). Diet, nutrition and chronic degenerative diseases. Nutrients, 13(4), 1372. https://doi.org/10.3390/nu13041372

    Article  PubMed  PubMed Central  Google Scholar 

  • Doldolova, K., Bener, M., Lalikoğlu, M., Aşçı, Y. S., Arat, R., & Apak, R. (2021). Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry, 353, 129337. https://doi.org/10.1016/j.foodchem.2021.129337

  • Doulabi, M., Golmakani, M., & Ansari, S. (2020). Evaluation and optimization of microwave‐assisted extraction of bioactive compounds from eggplant peel by‐product. Journal of Food Processing and Preservation, 44(11). https://doi.org/10.1111/jfpp.14853

  • Elik, A., Yanık, D. K., & Göğüş, F. (2020). Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT, 123, 109100. https://doi.org/10.1016/j.lwt.2020.109100

  • European Food Safety Authority (EFSA). (2008). Assessment of the results of the study by Mc Cann et al. (2007) on the effect of some colours and sodium benzoate on children’s behaviour ‐ scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (Afc). EFSA Journal, 6(3). https://doi.org/10.2903/j.efsa.2008.660

  • Fabrowska, J., Messyasz, B., Szyling, J., Walkowiak, J., & Łęska, B. (2018). Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods: Pigments extraction of freshwater algae. Phycological Research, 66(1), 52–57. https://doi.org/10.1111/pre.12191

    Article  CAS  Google Scholar 

  • Fomo, G., Madzimbamuto, T. N., & Ojumu, T. V. (2020). Applications of non-conventional green extraction technologies in process industries: Challenges, limitations and perspectives. Sustainability, 12(13), 5244. https://doi.org/10.3390/su12135244

    Article  CAS  Google Scholar 

  • Food Colorants Market Share | Global Size Report 2027. (2022). Global Market Insights Inc. Retrieved from https://www.gminsights.com/industry-analysis/food-colorant-market/amp

  • Garcia-Ortiz, J. D., Flores-Gallegos, A. C., Ascacio-Valdés, J. A., López-Badillo, C. M., Nery-Flores, S. D., Esparza-González, S. C., & Rodríguez-Herrera, R. (2022). Microwave-ultrasound assisted extraction of red corn pigments and their effect on chemical composition and tecno-functional properties. Food Bioscience, 50, 102115. https://doi.org/10.1016/j.fbio.2022.102115

  • Georgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2023). Process optimization of microwave-assisted extraction of chlorophyll, carotenoid and phenolic compounds from chlorella vulgaris and comparison with conventional and supercritical fluid extraction. Applied Sciences, 13(4), 2740. https://doi.org/10.3390/app13042740

    Article  CAS  Google Scholar 

  • Ghosh, S., Sarkar, T., Das, A., & Chakraborty, R. (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT, 153, 112527. https://doi.org/10.1016/j.lwt.2021.112527

  • Gohara-Beirigo, A. K., Matsudo, M. C., Cezare-Gomes, E. A., de Carvalho, J. C. M., & Danesi, E. D. G. (2022). Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends in Food Science & Technology, 125, 185–199. https://doi.org/10.1016/j.tifs.2022.04.030

    Article  CAS  Google Scholar 

  • Grillo, G., Gunjević, V., Radošević, K., Redovniković, I. R., & Cravotto, G. (2020). Deep eutectic solvents and non-conventional technologies for blueberry-peel extraction: Kinetics, anthocyanin stability, and antiproliferative activity. Antioxidants, 9(11), 1069. https://doi.org/10.3390/antiox9111069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid Nour, A., Ruth Oluwaseun, A., Hamid Nour, A., Suliman Omer, M., & Ahmed, N. (2021). Microwave-assisted extraction of bioactive compounds (review). Microwave Heating - Electromagnetic Fields Causing Thermal and Non-Thermal Effects. https://doi.org/10.5772/intechopen.96092

    Article  Google Scholar 

  • Hernández-Aguirre, O. A., Muro, C., Hernández-Acosta, E., Alvarado, Y., & Díaz-Nava, M. D. C. (2021). Extraction and stabilization of betalains from beetroot (Beta vulgaris) wastes using deep eutectic solvents. Molecules, 26(21), 6342. https://doi.org/10.3390/molecules26216342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrman, D. A., Brantsen, J. F., Ravisankar, S., Lee, K.-M., & Awika, J. M. (2020). Stability of 3-deoxyanthocyanin pigment structure relative to anthocyanins from grains under microwave assisted extraction. Food Chemistry, 333, 127494. https://doi.org/10.1016/j.foodchem.2020.127494

  • Ho, K. K. H. Y., Ferruzzi, M. G., Liceaga, A. M., & San Martín-González, M. F. (2015). Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT – Food Science and Technology, 62(1), 160–168. https://doi.org/10.1016/j.lwt.2014.12.061

  • Izirwan, I., Munusamy, T. D., Hamidi, N. H., & Sulaiman, S. Z. (2020). Optimization of microwave-assisted extraction of anthocyanin from clitoria ternatea flowers. International Journal of Mechanical Engineering and Robotics Research, 9(9), 1246–1252. https://doi.org/10.18178/ijmerr.9.9.1246-1252

  • Jafari, S. M., Mahdavee Khazaei, K., & Assadpour, E. (2019). Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Science & Nutrition, 7(4), 1438–1445. https://doi.org/10.1002/fsn3.978

    Article  CAS  Google Scholar 

  • Janiszewska-Turak, E., Pisarska, A., & Królczyk, J. B. (2016). Natural food pigments application in food products. Nauka Przyroda Technologie, 10(4). https://doi.org/10.17306/J.NPT.2016.4.51

  • Joo, H., Choi, S., Lee, Y., Lee, E., Park, M., Park, K., Kim, C.-S., Lim, Y., Park, J.-T., & Jeon, B. (2018). Anthocyanin-rich extract from red chinese cabbage alleviates vascular inflammation in endothelial cells and apo E−/−mice. International Journal of Molecular Sciences, 19(3), 816. https://doi.org/10.3390/ijms19030816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurić, S., Jurić, M., Król-Kilińska, Ż., Vlahoviček-Kahlina, K., Vinceković, M., Dragović-Uzelac, V., & Donsì, F. (2020). Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International, 1–56. https://doi.org/10.1080/87559129.2020.1837862

  • Kadi, A., Boudries, H., Bachir-bey, M., Teffane, M., Taibi, A., & Boulekbache-Makhlouf, L. (2022). Optimization of microwave-assisted extraction of carotenoids from Citrus clementina peels. Current Bioactive Compounds, 18(6). https://doi.org/10.2174/1573407218666211230152122

  • Kumar, S., Rawson, A., Kumar, A., Ck, S., Vignesh, S., & Venkatachalapathy, N. (2023). Lycopene extraction from industrial tomato processing waste using emerging technologies, and its application in enriched beverage development. International Journal of Food Science & Technology, 58(4), 2141–2150. https://doi.org/10.1111/ijfs.16156

    Article  CAS  Google Scholar 

  • Kurtulbaş, E., Pekel, A. G., Bilgin, M., Makris, D. P., & Şahin, S. (2022). Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery, 12(2), 351–360. https://doi.org/10.1007/s13399-02000606-3

    Article  Google Scholar 

  • Lasunon, C., Ponpesh, P., & Satirapipathkul, C. (2018). Pigment extraction from flower using microwave assisted extraction. International Journal of Science, Engineering and Management, 3(5). https://www.technoarete.org/common_abstract/pdf/IJSEM/v5/i5/Ext_18573.pdf

  • Leichtweis, M. G., Oliveira, M. B. P. P., Ferreira, I. C. F. R., Pereira, C., & Barros, L. (2021). Sustainable recovery of preservative and bioactive compounds from food industry bioresidues. Antioxidants, 10(11), 1827. https://doi.org/10.3390/antiox10111827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Chen, S., Sha, J., Cui, J., He, J., Fu, J., & Shen, Y. (2021). Extraction and purification of total flavonoids from Eupatorium lindleyanum DC. And evaluation of their antioxidant and enzyme inhibitory activities. Food Science & Nutrition, 9(5), 2349–2363. https://doi.org/10.1002/fsn3.1999

  • Li, Y., Radoiu, M., Fabiano-Tixier, A.-S., & Chemat, F. (2013). From laboratory to industry: Scaleup of microwave-assisted reactors, quality and safety consideration for microwave-assisted extraction. Food Engineering Series, 207–229. https://doi.org/10.1007/978-1-4614-4830-3_8

  • Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731–737. https://doi.org/10.1016/j.ultsonch.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • Liazid, A., Guerrero, R. F., Cantos, E., Palma, M., & Barroso, C. G. (2011). Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry, 124(3), 1238–1243. https://doi.org/10.1016/j.foodchem.2010.07.053

    Article  CAS  Google Scholar 

  • Lopez-Avila V., & Luque de Castro M. D. (2014) Microwave-assisted extraction. In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA: Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11172-2

  • Lugo-Radillo, A., Delgado-Enciso, I., & Peña-Beltrán, E. (2012). Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Natural Products and Bioprospecting, 2(4), 154–155. https://doi.org/10.1007/s13659-012-0034-z

    Article  CAS  PubMed Central  Google Scholar 

  • Manzoor, M., Singh, J., Gani, A., & Noor, N. (2021). Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chemistry, 362, 130141. https://doi.org/10.1016/j.foodchem.2021.130141

  • Marsin, A. M., Jusoh, Y. M. M., Zaidel, D. N. A., Hashim, Z., Mohd Yosuf, A. H., & Muhamad, I. I. (2020). Microwave-assisted encapsulation of blue pea flower (Clitoria ternatea) colourant: Maltodextrin concentration, power, and time. Chemical Engineering Transactions, 78. https://doi.org/10.3303/CET2078034

  • Martínez-Abad, A., Ramos, M., Hamzaoui, M., Kohnen, S., Jiménez, A., & Garrigós, M. C. (2020). Optimisation of sequential microwave-assisted extraction of essential oil and pigment from lemon peels waste. Foods, 9(10), 1493. https://doi.org/10.3390/foods9101493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins, M., Oliveira, R., Coutinho, J. A. P., Faustino, M. A. F., Neves, M. G. P. M. S., Pinto, D. C. G. A., & Ventura, S. P. M. (2021). Recovery of pigments from Ulva rigida. Separation and Purification Technology, 255, 117723. https://doi.org/10.1016/j.seppur.2020.117723

  • Mary Leema, J. T., Persia Jothy, T., & Dharani, G. (2022). Rapid green microwave assisted extraction of lutein from Chlorella sorokiniana (NIOT-2) – Process optimization. Food Chemistry, 372, 131151. https://doi.org/10.1016/j.foodchem.2021.131151

  • Mohammad Azmin, S. N. H., Sulaiman, N. S., Mat Nor, M. S., Abdullah, P. S., Abdul Kari, Z., & Pati, S. (2022). A review on recent advances on natural plant pigments in foods: Functions, extraction, importance and challenges. Applied Biochemistry and Biotechnology, 194(10), 4655–4672. https://doi.org/10.1007/s12010-022-04050-z

    Article  CAS  PubMed  Google Scholar 

  • Moirangthem, K., Ramakrishna, P., Amer, M. H., & Tucker, G. A. (2021). Bioactivity and anthocyanin content of microwave-assisted subcritical water extracts of Manipur black rice (Chakhao) bran and straw. Future Foods, 3, 100030. https://doi.org/10.1016/j.fufo.2021.100030

  • More, P. R., Jambrak, A. R., & Arya, S. S. (2022). Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends in Food Science & Technology, 128, 296–315. https://doi.org/10.1016/j.tifs.2022.08.016

    Article  CAS  Google Scholar 

  • Netramai, S., Kijchavengkul, T., Samsudin, H., & Lertsiri, S. (2020). Enhanced extraction of anthocyanins from red cabbage (Brassica oleraces) using microwave assisted extraction. The 21st Food Innovation Asia Conference 2019 (FIAC 2019) Future Food Innovation for Better Health and Wellness. https://www.researchgate.net/publication/342242524_Enhanced_Extraction_of_Anthocyanins_from_Red_Cabbage_Brassica_oleraces_Using_Microwave_Assisted_Extraction

  • Netravati, Gomez, S., Pathrose, B., Mini Raj, N., Meagle Joseph, P., & Kuruvila, B. (2022). Comparative evaluation of anthocyanin pigment yield and its attributes from butterfly pea (Clitorea ternatea L.) flowers as prospective food colorant using different extraction methods. Future Foods6, 100199. https://doi.org/10.1016/j.fufo.2022.100199

  • Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pre-treatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, H., Nguyen, M., Chandran, V., Nguyen, QH., Nguyen, KT., Nguyen, C., Bui Chi, T.,  Nguyen, V., Lam, F., & Dang H. (2019). Phytochemical, cardiovascular effect, antioxidant, anti-inflammation and anti-tumor properties by beta vugaris (beet) root juice. Journal of Translational Science, 5(5). https://doi.org/10.15761/JTS.1000293

  • Nguyen, T.-T.-D., Nguyen, Q.-D., & Nguyen, T.-V.-L. (2021). Kinetic study on chlorophyll and antioxidant activity from Polyscias fruticosa (L.) harms leaves via microwave-assisted extraction. Molecules, 26(12), 3761. https://doi.org/10.3390/molecules26123761

  • Nirmal, N., Mereddy, R., & Maqsood, S. (2021). Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chemistry, 356, 129611 https://doi.org/10.1016/j.foodchem.2021.129611

  • ‌Nonglait, D. L., Chukkan, S. M., Arya, S. S., Bhat, M. S., & Waghmare, R. (2022). Emerging non-thermal technologies for enhanced quality and safety of fruit juices. International Journal of Food Science & Technology, 57(10), 6368–6377. https://doi.org/10.1111/ijfs.16017

    Article  CAS  Google Scholar 

  • Okafor, S. N., Obonga, W., Ezeokonkwo, M. A., Nurudeen, J., Orovwigho, U., & Ahiabuike, J. (2016). Assessment of the health implications of synthetic and natural food colourants – A critical review. Pharmaceutical and Biosciences Journal, 01–11. https://doi.org/10.20510/ukjpb/4/i4/110639

  • Pailliè-Jiménez, M. E., Stincone, P., & Brandelli, A. (2020). Natural pigments of microbial origin. Frontiers in Sustainable Food Systems, 4, 590439. https://doi.org/10.3389/fsufs.2020.590439

  • Pang, M., Liu, Q., li Yu, Y., & ling Cai, S. (2019). Ultrasonic-microwave synergistic extraction of paprika pigment. E3S Web of Conferences, 78, 02009. https://doi.org/10.1051/e3sconf/20197802009

  • Panić, M., Gunjević, V., Cravotto, G., & Radojčić Redovniković, I. (2019). Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chemistry, 300, 125185. https://doi.org/10.1016/j.foodchem.2019.125185

  • Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., Kaas, R., Serive, B., Patrice, T., Cadoret, J.-P., & Picot, L. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59–67. https://doi.org/10.1016/j.procbio.2010.07.009

    Article  CAS  Google Scholar 

  • ‌Patil, S. S., & Rathod, V. K. (2023). Extraction and purification of curcuminoids from Curcuma longa using microwave assisted deep eutectic solvent-based system and cost estimation. Process Biochemistry, 126, 61–71. https://doi.org/10.1016/j.procbio.2022.11.010

    Article  CAS  Google Scholar 

  • Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green extraction techniques—A comparative perspective. Current Opinion in Food Science, 40, 144–156. https://doi.org/10.1016/j.cofs.2021.02.009

    Article  CAS  Google Scholar 

  • Ranaweera, S., Ampemohotti, T., & Arachchige, U. (2020). Advantages and considerations for the applications of natural food pigments in the food industry. Journal of Research Technology and Engineering, 1(1). https://www.jrte.org/2020/01/25/advantages-and-considerations-forthe-applications-of-natural-food-pigments-in-the-food-industry/amp/

  • Rathnasamy, S. K., Rajendran, D. S., Balaraman, H. B., & Viswanathan, G. (2019). Functional deep eutectic solvent-based chaotic extraction of phycobiliprotein using microwave-assisted liquid-liquid micro-extraction from spirulina (Arthrospira platensis) and its biological activity determination. Algal Research, 44, 101709. https://doi.org/10.1016/j.algal.2019.101709

  • Rodrigues, R. D. P., Silva, A. S. E., Carlos, T. A. V., Bastos, A. K. P., De Santiago-Aguiar, R. S., & Rocha, M. V. P. (2020). Application of protic ionic liquids in the microwave-assisted extraction of phycobiliproteins from Arthrospira platensis with antioxidant activity. Separation and Purification Technology, 252, 117448. https://doi.org/10.1016/j.seppur.2020.117448

  • Rodríguez-Mena, A., Ochoa-Martínez, L. A., González-Herrera, S. M., Rutiaga-Quiñones, O. M., González-Laredo, R. F., & Olmedilla-Alonso, B. (2023). Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry, 398, 133908. https://doi.org/10.1016/j.foodchem.2022.133908

  • Routray, W., & Orsat, V. (2011). Microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology, 5(2), 409–424. https://doi.org/10.1007/s11947-011-0573-z

    Article  CAS  Google Scholar 

  • Salazar-Gonzalez, C., Diaz-Moreno, C., & Fuenmayor, C. A. (2019). Extraction of carotenoids from bee pollen using sunflower oil: Evaluation of time and matrix-solvent ratio. Chemical Engineering Transactions, 75, 541–546. https://doi.org/10.3303/CET1975091

    Article  Google Scholar 

  • Sharma, A., Mazumdar, B., & Keshav, A. (2021). Valorization of unsalable Amaranthus tricolour leaves by microwave-assisted extraction of betacyanin and betaxanthin. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01267-y

    Article  Google Scholar 

  • Sharma, M., & Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4), 787. https://doi.org/10.3390/foods10040787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, M., Hussain, S., Shalima, T., Aav, R., & Bhat, R. (2022). Valorization of seabuckthorn pomace to obtain bioactive carotenoids: An innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (Edible oils). Industrial Crops and Products175, 114257. https://doi.org/10.1016/j.indcrop.2021.114257

  • Sigurdson, G. T., Tang, P., & Giusti, M. M. (2017). Natural colorants: Food colorants from natural sources. Annual Review of Food Science and Technology, 8(1), 261–280. https://doi.org/10.1146/annurev-food-030216-025923

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Ganesapillai, M., & Gnanasundaram, N. (2017). Optimization of extraction of betalain pigments from beta vulgaris peels by microwave pre-treatment. IOP Conference Series: Materials Science and Engineering, 263, 032004. https://doi.org/10.1088/1757-899X/263/3/032004

  • Spence, C. (2015). On the psychological impact of food colour. Flavour, 4(1), 21. https://doi.org/10.1186/s13411-015-0031-3

    Article  Google Scholar 

  • Subramoniam, A., Asha, V. V., Nair, S. A., Sasidharan, S. P., Sureshkumar, P. K., Rajendran, K. N., Karunagaran, D., & Ramalingam, K. (2012). Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of tnf-α gene by the same. Inflammation, 35(3), 959–966. https://doi.org/10.1007/s10753-011-9399-0

    Article  CAS  PubMed  Google Scholar 

  • Symonds, M. (2019). Faculty opinions recommendation of health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the global burden of disease study 2017. Faculty OpinionsPost-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.735450328.793558526

  • Teng, H., Lee, W. Y., & Choi, Y. H. (2014). Optimization of ultrasonic-assisted extraction of polyphenols, anthocyanins, and antioxidants from raspberry (Rubus coreanus Miq.) using response surface methodology. Food Analytical Methods, 7(7), 1536–1545. https://doi.org/10.1007/s12161-0139786-2

  • Urošević, M., Nikolić, L., Gajić, I., Nikolić, V., Dinić, A., & Miljković, V. (2022). Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics, 11(2), 135. https://doi.org/10.3390/antibiotics11020135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veggi, P. C., Martinez, J., & Meireles, M. A. A. (2012). Fundamentals of microwave extraction. In F. Chemat & G. Cravotto (Eds), Microwave-assisted extraction for bioactive compounds: Theory and practice (pp. 15–52). Springer US. https://doi.org/10.1007/978-1-4614-4830-3_2

  • ‌Vidana Gamage, G. C., & Choo, W. S. (2023). Hot water extraction, ultrasound, microwave and pectinase-assisted extraction of anthocyanins from blue pea flower. Food Chemistry Advances, 2, 100209. https://doi.org/10.1016/j.focha.2023.100209

  • Von Koerber, K., Bader, N., & Leitzmann, C. (2017). Wholesome nutrition: An example for a sustainable diet. Proceedings of the Nutrition Society, 76(1), 34–41. https://doi.org/10.1017/S0029665116000616

    Article  Google Scholar 

  • Wakte, P. S., Sachin, B. S., Patil, A. A., Mohato, D. M., Band, T. H., & Shinde, D. B. (2011). Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology, 79(1), 50–55. https://doi.org/10.1016/j.seppur.2011.03.010

    Article  CAS  Google Scholar 

  • ‌Xu, J., Liao, W., Liu, Y., Guo, Y., Jiang, S., & Zhao, C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Production, Processing and Nutrition, 5(1), 18. https://doi.org/10.1186/s43014-023-00132-5

    Article  CAS  Google Scholar 

  • Yang, Z., & Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Science & Emerging Technologies, 11(3), 470–476. https://doi.org/10.1016/j.ifset.2010.03.003

  • Zhang, H.-F., Yang, X.-H., & Wang, Y. (2011). Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology, 22(12), 672–688. https://doi.org/10.1016/j.tifs.2011.07.003

    Article  CAS  Google Scholar 

  • Zhou, J., Wang, M., Carrillo, C., Hassoun, A., Collado, M. C., & Barba, F. J. (2022). Application of omics in food color. Current Opinion in Food Science, 46, 100848. https://doi.org/10.1016/j.cofs.2022.100848

  • Zill-e-Huma, V., & M. A., Fabiano-Tixier, A.-S., Elmaataoui, M., Dangles, O., & Chemat, F. (2011). A remarkable influence of microwave extraction: Enhancement of antioxidant activity of extracted onion varieties. Food Chemistry, 127(4), 1472–1480. https://doi.org/10.1016/j.foodchem.2011.01.112

    Article  CAS  Google Scholar 

  • Zin, M. M., & Bánvölgyi, S. (2021). Emerging technology approach for extractability and stability of betalains from the peel of beetroot (Beta vulgaris L.). Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01975-z

  • Zin, M. M., Nagy, K., Bánvölgyi, S., Abrankó, L., & Nath, A. (2022). Effect of microwave pretreatment on the extraction of antioxidant‐rich red color betacyanin, phenolic, and flavonoid from the crown of Cylindra‐type beetroot (beta vulgaris l.). Journal of Food Process Engineering, 45(12). https://doi.org/10.1111/jfpe.14175

  • Zou, T., Wang, D., Guo, H., Zhu, Y., Luo, X., Liu, F., & Ling, W. (2012). Optimization of microwave assisted extraction of anthocyanins from mulberry and identification of anthocyanins in extract using hplc-esi-ms. Journal of Food Science, 77(1), C46–C50. https://doi.org/10.1111/j.1750-3841.2011.02447.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Donald Lyngdoh Nonglait would like to thank the Department of Biotechnology (DBT), Government of India for providing a fellowship for pursuing MTech in Food Biotechnology at the Institute of Chemical Technology, Mumbai with Grant No. BT/HRD/01/05/2020.

Funding

DLN received funding from the Department of Biotechnology, Government of India (sanction order number: BT/HRD/01/05/2020).

Author information

Authors and Affiliations

Authors

Contributions

Donald Lyngdoh Nonglait: writing—original draft, review and editing, methodology, formal analysis, investigation, data curation, visualization. Jyoti S Gokhale: conceptualization, project administration, supervision, writing—review and editing.

Corresponding author

Correspondence to Jyoti S. Gokhale.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonglait, D.L., Gokhale, J.S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03192-0

Keywords

Navigation