Skip to main content
Log in

Novel Synthesis of CuW Composite Containing Micro- and Nano-tungsten Particles Coated with SixWy Phase via Silicothermic Coupling with Aluminothermic Reduction

  • Characterization Techniques and Methods for Low-Carbon Metallurgical Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel method for preparing CuW composite containing micro- and nano-tungsten particles coated with SixWy phase via silicothermic coupling with aluminothermic reduction is presented in this paper. Compared with powder metallurgy, this method avoids the long sintering process at high temperatures and has the advantages of short process flow and low energy consumption. The thermodynamic equilibrium of the Al-Si-CuO-WO3 system was calculated, and CuW and slag samples were systematically analyzed. The results show that it is feasible to prepare a composite containing micro- and nano-tungsten particles coated with SixWy phase via silicothermic coupling with aluminothermic reduction, and the microstructure of CuW composites mainly composed of matrix, spherical tungsten particles wrapped with irregular SixWy phase and a small number of black inclusions. With an increase in RSi, the proportion of black inclusions decreased, tungsten-containing phases increased and the size distribution range and average diameter of tungsten-containing phases in slag showed an increasing trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zou, D. Song, H. Shi, and S. Liang, Mater. Res. Express 7(2), 26528 (2020).

    Article  Google Scholar 

  2. X.J. Zhang, Z.K. Dai, and X.R. Liu, Acta Metall. Sin. 31(07), 761 (2018).

    Article  Google Scholar 

  3. Q. Zhang, S. Liang, and L. Zhuo, Mater. Sci. Technol. 33(17), 2071 (2017).

    Article  Google Scholar 

  4. G. He, P. Zhao, S. Guo, Y. Chen, G. Liu, and J. Li, J. Alloys Compd. 579, 71 (2013).

    Article  Google Scholar 

  5. Y. Guo, H. Guo, B. Gao, X. Wang, Y. Hu, and Z. Shi, J. Alloys Compd. 724, 155 (2017).

    Article  Google Scholar 

  6. C. Wang, S. Liang, F. Cao, and Q. Zhang, J. Alloys Compd. 816, 152506 (2019).

    Article  Google Scholar 

  7. A. Ibrahim, M. Abdallah, and S.F. Mostalfa, Mater. Des. 30(4), 1398 (2009).

    Article  Google Scholar 

  8. G.Q. Luo, L.M. Zhang, and W.S. Chen, J. Alloys Compd. 588, 49 (2014).

    Article  Google Scholar 

  9. F.A.D. Costa, A.G.P.D. Silva, and U.U. Gomes, Powder Technol. 134(1), 123 (2003).

    Article  Google Scholar 

  10. C. Wang, S.H. Liang, and F. Cao, J. Alloys Compd. 816(5), 152506 (2019).

    Google Scholar 

  11. Y. Li, J. Zhang, and G.Q. Luo, J. Mater. Res. Technol. 10, 121 (2021).

    Article  Google Scholar 

  12. J.W. Wang, J.L. Fan, and H.R. Gong, J. Alloys Compd. 661, 553 (2016).

    Article  Google Scholar 

  13. W.T. Qiu, Y. Pang, and Z. Xiao, Int. J. Refract. Met. Hard Mater. 61, 91 (2016).

    Article  Google Scholar 

  14. V. Madhur, M. Srikanth, and A.R. Annamalai, Nanomaterials 11(2), 413 (2021).

    Article  Google Scholar 

  15. C.S. Zhou, L.Y. Li, and J. Wang, J. Alloys Compd. 743, 383 (2018).

    Article  Google Scholar 

  16. W.M. Daoush, J. Yao, and M. Shamma, Scr. Mater. 113(1), 246 (2016).

    Article  Google Scholar 

  17. Q.Y. Chen, S.H. Liang, H. Zhang, and D.X. Liu, Adv. Powder Technol. Powder Technol. 32(3), 908 (2021).

    Article  Google Scholar 

  18. Y.J. Guo, H.T. Guo, B.X. Gao, X.G. Wang, and Y.B. Hu, Adv. Powder Technol. Powder Technol. 724, 155 (2017).

    Google Scholar 

  19. T. Sarmah, N. Aomoa, and G. Bhattacharjee, J. Alloys Compd. 725, 606 (2017).

    Article  Google Scholar 

  20. J.L. Johnson, J.J. Brezovsky, and R.M. German, Metall. Mater. Trans. A 36(10), 2807 (2005).

    Article  Google Scholar 

  21. B.Q. Li, Z.Q. Sun, and G.L. Hou, Int. J. Refract. Met. Hard Mater. 56, 44 (2016).

    Article  Google Scholar 

  22. L.C. Zhuo, J.L. Zhang, Q.Q. Zhang, et al., Vacuum 181, 109620 (2020).

    Article  Google Scholar 

  23. C. Cheng, Z.W. Song, L.F. Wang, and L.S. Wang, Nanotechnol. Rev. 11(1), 760 (2022).

    Article  Google Scholar 

  24. C. Cheng, K.X. Song, Z.W. Song, L.F. Wang, and Q.Q. Xu, JOM 74(3), 931 (2022).

    Article  Google Scholar 

  25. C. Cheng, Z.W. Song, L.F. Wang, K.X. Song, and T. Huang, Rare Met. 41(12), 4047 (2022).

    Article  Google Scholar 

  26. A.G. Merzhanov, J. Mater. Chem. 18, 7766 (2004).

    Google Scholar 

  27. Z.R. Tang and R.Z. Tian, Cent. South Univ. Press 51 (2009)

Download references

Acknowledgements

The authors thank the Natural Science Foundation of China (Grant No. 52204359), Chinese Postdoctoral Science Foundation (Grant No. 2022T150193), Natural Science Foundation of Henan Province (Grant No. 222300420154), Key Scientific Research Project of colleges and universities of Henan Province (Grant No. 22A450002), Foundation for Key Teacher by Henan University of Science and Technology (Grant No. 13450026), Zhongyuan Scholar Workstation Funded Project (Grant No. 224400510025) and Henan Key Research and Development Project (Grant No. 221111230600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Zhang, ME., Wang, XY. et al. Novel Synthesis of CuW Composite Containing Micro- and Nano-tungsten Particles Coated with SixWy Phase via Silicothermic Coupling with Aluminothermic Reduction. JOM (2024). https://doi.org/10.1007/s11837-024-06538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06538-x

Navigation