Skip to main content
Log in

Isobaric Vapor–Liquid Equilibrium Data of Binary Mixtures of [Water + 2,3-butanediol] and [Water + 1,4-butanediol] at 40, 50, 60, 66.7, 80, and 101 kPa

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Isobaric vapor–liquid equilibrium (VLE) data for two binary systems, water + 2,3-butanediol (2,3-BDO) and water + 1,4-butanediol (1,4-BDO), were gathered using a customized Othmer still VLE apparatus at various pressures (40, 50, 60, 66.7, 80, and 101 kPa). In addition, the NRTL and UNIQUAC activity coefficient models were applied to correlate the data obtained experimentally, and the parameters for these binary models were derived. The average absolute deviation of temperature (AADT), AAD of vapor-phase composition (AADy), and root-mean-square deviation values were employed to assess the agreement between the experimental results and the values calculated using the two modeling methods. The total AADy values for the water + 2,3-butanediol system were calculated to be 6.4 × 10–3 (NRTL) and 2.2 × 10–3 (UNIQUAC), and for the water + 1,4-butanediol system, the values were 2.7 × 10–3 (NRTL) and 2.5 × 10–3 (UNIQUAC). The reliability of the models was confirmed by the close match between the calculated and experimental data. The Van Ness-Byer-Gibbs test was conducted to evaluate the validity and thermodynamic consistency of the experimental results. The calculated values for \(\Delta P\) and \(\Delta y\) in all systems were below 1.0, satisfying the thermodynamic consistency requirements. The information gained from this study on the vapor–liquid equilibrium behavior of the water + 2,3-butanediol and water + 1,4-butanediol systems is crucial for optimizing and designing their separation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. E. Celińska, W. Grajek, Biotechnol. Adv. 27, 715 (2009)

    Article  PubMed  Google Scholar 

  3. K.J. Wu, G.D. Saratale, Y.C. Lo, W.M. Chen, Z.J. Tseng, M.C. Chang, B.C. Tsai, A. Su, J.S. Chang, Bioresour. Technol. 99, 7966 (2008)

  4. S. Garg, A. Jain, Bioresour. Technol. 51, 103 (1995)

  5. M.J. Syu, Appl. Microbiol. Biotechnol. 55, 10 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. X.J. Ji, H. Huang, P.K. Ouyang, Biotechnol. Adv. 29, 351 (2011)

  7. J.V. Haveren, E.L. Scott, J. Sanders, Biofuel Bioprod. Biorefining 2, 41 (2008)

    Article  Google Scholar 

  8. D.D. Faveri, P. Torre, F. Molinari, P. Perego, A. Converti, Enzyme Microb. Technol. 33, 708 (2003)

  9. Toray Industries, Inc. US Patent 9,533,931 B2. https://patents.google.com/patent/US9533931B2/en (2017)

  10. B.D. Ahn, S.H. Kim, Y.H. Kim, J.S. Yang, J. Appl. Polym. Sci. 82, 2808 (2001)

    Article  CAS  Google Scholar 

  11. D.P. Minh, M. Besson, C. Pinel, P. Fuertes, C. Petitjean, Top. Catal. 53, 1270 (2010)

    Article  CAS  Google Scholar 

  12. J. Cheng, J. Li, L. Zheng, J. Agric. Food Chem. 69, 10480 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhu, J. Yang, F. Mei, X. Li, C. Zhao, Green Chem. 24, 6450 (2022)

    Article  CAS  Google Scholar 

  14. L.M. Vane, Biofuel Bioprod. Biorefining 2, 553 (2008)

    Article  CAS  Google Scholar 

  15. S.D. Birajdar, S. Rajagopalan, J.S. Sawant, S. Padmanabhan, Process Biochem. 50, 1449 (2015)

    Article  CAS  Google Scholar 

  16. Y.Y. Wu, K. Chen, J.W. Zhu, B. Wu, L. Ji, Y.L. Shen, Can. J. Chem. Eng. 92, 511 (2014)

    Article  CAS  Google Scholar 

  17. M.M.L. Duarte, J. Lozar, G. Malmary, J. Molinier, J. Chem. Eng. Data 34, 43 (1989)

    Article  CAS  Google Scholar 

  18. M.A. Eiteman, J.L. Gainer, Appl. Microbiol. Biotechnol. 30, 614 (1989)

    Article  CAS  Google Scholar 

  19. B.N. Taylor, C.E. Kuyatt, NIST Technical Note 1297 1994 Edition, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. Natl. Inst. Stand. Technol. 1 (1994)

  20. J. Gmehling, U. Onken, Dechema, 1 (Frankfurt, Germany, p. 22) (1977)

  21. H. Renon, J.M. Prausnitz, AICHE J. 4, 135 (1968)

    Article  Google Scholar 

  22. D.S. Abrams, J.M. Prausnitz, AICHE J. 21, 116 (1975)

    Article  CAS  Google Scholar 

  23. J.H. Yim, H.J. Kim, J.J. Oh, J.S. Lim, K.Y. Choi, Fluid Phase Equilib. 530, 112897 (2021)

    Article  CAS  Google Scholar 

  24. A. Bondi, J. Phys. Chem. 68, 441 (1964)

    Article  CAS  Google Scholar 

  25. H.C. Van Ness, S.M. Byer, R.E. Gibbs, AIChE J. 19, 238 (1973)

    Article  Google Scholar 

  26. P.L. Jackson, R.A. Wilsak, Fluid Phase Equilib. 103, 155 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01013707). This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE) (20214000000500, Training program of CCUS for the green growth).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Sung Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, WW., Yim, JH., Kang, J.W. et al. Isobaric Vapor–Liquid Equilibrium Data of Binary Mixtures of [Water + 2,3-butanediol] and [Water + 1,4-butanediol] at 40, 50, 60, 66.7, 80, and 101 kPa. Korean J. Chem. Eng. 41, 1457–1466 (2024). https://doi.org/10.1007/s11814-024-00039-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00039-y

Keywords

Navigation