Skip to main content
Log in

A cascaded microwave photonic filter based on a low-coherence infinite-impulse-response filter

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A cascaded filter combining active and passive filters is proposed. The active filter acts as a low-coherence infinite-impulse-response (IIR) filter and achieves a sharp frequency response. The low-coherence IIR filter is realized by employing the cross-gain modulation (XGM) of the amplified spontaneous emission (ASE) spectrum of the semiconductor optical amplifier (SOA). The passive filter is an n-section unbalance Mach-Zehnder (UMZ) structure, which is used to increase free spectral range (FSR) and Q factor further. The low-coherence IIR filter cascaded with one section of UMZ passive filter is experimentally demonstrated, and a Q factor of 1268 is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Capmany, B. Ortega and D. Pastor, J. Lightw. Technol. 24, 201 (2006).

    Article  ADS  Google Scholar 

  2. R. A. Minasian, IEEE Trans. Microw. Theory Technol. 54, 832 (2006).

    Article  ADS  Google Scholar 

  3. JIN Sheng-cai and ZHANG Ai-ling, Optoelectronics Letters 7, 113 (2011).

    Article  ADS  Google Scholar 

  4. WU Xiao-jun and ZHANG Ai-ling, Optoelectronics Letters 8, 340 (2012).

    Article  ADS  Google Scholar 

  5. B. Vidal, T. Mengual, C. Ibáñez-López and J. Marti, IEEE Photon. Technol. Lett. 18, 2272 (2006).

    Article  ADS  Google Scholar 

  6. Xiaoke Yi, T. X. H. Huang and R. A. Minasian, IEEE Trans. Microw. Theory Technol. 58, 3088 (2010).

    Article  Google Scholar 

  7. Haiyan Ou, Kun Zhu, Chenhui Ye and Ying Hu, IEEE Photon. Technol. Lett. 23, 938 (2011).

    Article  ADS  Google Scholar 

  8. J. Chang, Yanhua Deng, M. P. Fok, J. Meister and P. R. Prucnal, Applied Optics 51, 4265 (2012).

    Article  Google Scholar 

  9. D. B. Hunter and R. A. Minasian, IEEE Trans. Microw. Theory Technol. 45, 1463 (1997).

    Article  ADS  Google Scholar 

  10. C. Pulikkaseril, E. H. W. Chan and R. A. Minasian, J. Lightw. Technol. 28, 262 (2010).

    Article  ADS  Google Scholar 

  11. E. H. W. Chan and R. A. Minasian, Electron. Lett. 47, 113 (2011).

    Article  Google Scholar 

  12. C. Pulikkaseril, E. H. W. Chan and R. A. Minasian, Microwave and Optical Technology Letters 53, 1284 (2011).

    Article  Google Scholar 

  13. J. Capmany, J. Lightw. Technol. 24, 2564 (2006).

    Google Scholar 

  14. N. You and R. A. Minasian, IEEE Trans. Microw. Theory Technol. 47, 1304 (1999).

    Article  ADS  Google Scholar 

  15. N. You and R. A. Minasian, Electron. Lett. 35, 2125 (1999).

    Article  Google Scholar 

  16. E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li and D. Huang, J. Lightw. Technol. 28, 2358 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-ming Xu  (徐恩明).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61007064), the Jiangsu Natural Science Foundation (No.BK2012432), the Ph.D. Programs Foundation of the Ministry of Education of China (No.BJ212016), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (No.NY211017).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Em., Wang, F. & Li, Pl. A cascaded microwave photonic filter based on a low-coherence infinite-impulse-response filter. Optoelectron. Lett. 9, 165–168 (2013). https://doi.org/10.1007/s11801-013-3009-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-013-3009-3

Keywords

Navigation