Skip to main content
Log in

Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free ceramics (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3x wt.%Cr2O3 (BCZT-xCr) were prepared via the conventional solid-state reaction method. The microstructure and electrical properties of BCZT-xCr samples were systematically studied. XRD and Raman results showed that all samples possessed a single phased perovskite structure and were close to the morphotropic phase boundary (MPB). With the increase of the Cr content, the rhombohedral-tetragonal phase transition temperature (T R-T) increases slightly, and the Curie temperature (T C) shifts towards the low temperature side. XPS analysis reveals that Cr3+ and Cr5 + ions co-existed in Cr-doped BCZT ceramics, indicating the different impact on the electrical properties from Cr ions as “acceptor” or “donor”. For the x = 0.1 sample, relative high piezoelectric constants d 33 (∼316 pC/N) as well as high Q m (∼554) and low tanδ (∼0.8%) were obtained. In addition, the AC conductivity was also investigated. Hopping charge was considered as the main conduction mechanism at low temperature. As the temperature increases, small polarons and oxygen vacancies conduction played important roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J F, Wang K, Zhu F Y, et al. (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696

    Article  Google Scholar 

  2. Wang P, Li Y, Lu Y, et al. Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. Journal of the European Ceramic Society, 2011, 31(11): 2005–2012

    Article  Google Scholar 

  3. Rödel J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177

    Article  Google Scholar 

  4. Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009, 103(25): 257602

    Article  Google Scholar 

  5. Jo W, Dittmer R, Acosta M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. Journal of Electroceramics, 2012, 29(1): 71–93

    Article  Google Scholar 

  6. Gao J, Xue D, Wang Y, et al. Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics. Applied Physics Letters, 2011, 99(9): 092901 (3 pages)

    Google Scholar 

  7. Zheng P, Song K X, Qin H B, et al. Piezoelectric activities and domain patterns of orthorhombic Ba(Zr,Ti)O3 ceramics. Current Applied Physics, 2013, 13(6): 1064–1068

    Article  Google Scholar 

  8. Brajesh K, Kalyani A K, Ranjan R. Ferroelectric instabilities and enhanced piezoelectric response in Ce modified BaTiO3 lead-free ceramics. Applied Physics Letters, 2015, 106(1): 257602 (3 pages)

    Google Scholar 

  9. Zhang D, Zhang Y, Yang S. Microstructure and electrical properties of tantalum doped (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26(2): 909–915

    Google Scholar 

  10. Li W, Xu Z, Chu R, et al. Improved piezoelectric property and bright upconversion luminescence in Er doped (Ba0.99Ca0.01) (Ti0.98Zr0.02)O3 ceramics. Journal of Alloys and Compounds, 2014, 583: 305–308

    Article  Google Scholar 

  11. Jiang X P, Li L, Chen C, et al. Effects of Mn-doping on the properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 lead-free ceramics. Journal of Alloys and Compounds, 2013, 574: 88–91

    Article  Google Scholar 

  12. Wang X, Liang P, Chao X, et al. Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free ceramics. Journal of the American Ceramic Society, 2015, 98(5): 1506–1514

    Article  Google Scholar 

  13. Kumar P, Singh S, Juneja J K, et al. Effect of substitution of Pb on ferroelectric and piezoelectric properties BZT ceramics. Materials Letters, 2015, 146: 40–42

    Article  Google Scholar 

  14. Mastelaro V R, Favarim H R, Mesquita A, et al. Local structure and hybridization states in Ba0.9Ca0.1Ti1–xZrxO3 ceramic compounds: Correlation with a normal or relaxor ferroelectric character. Acta Materialia, 2015, 84: 164–171

    Article  Google Scholar 

  15. Cheon C I, Lee H G. The piezoelectric properties and the stability of the reasont frequency in Mn–Cr co-doped PSZT ceramics. Journal of Materials Science: Materials in Electronics, 1999, 10 (2): 81–84

    Google Scholar 

  16. Hou Y D, Lu P X, Zhu M K, et al. Effect of Cr2O3 addition on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.20 (Zr0.50Ti0.50)0.80)O3 ceramics. Materials Science and Engineering B, 2005, 116(1): 104–108

    Article  Google Scholar 

  17. He L X, Gao M, Li C E, et al. Effects of Cr2O3 addition on the piezoelectric properities and microstructure of PbZrxTiy(Mg1/3 Nb2/3)1–x–yO3 ceramics. Journal of the European Ceramic Society, 2001, 21(6): 703–709

    Article  Google Scholar 

  18. Hou J, Qu Y, Vaish R, et al. Crystallographic evolution, dielectric, and piezoelectric properties of Bi4Ti3O12:W/Cr ceramics. Journal of the American Ceramic Society, 2010, 93(5): 1414–1421

    Google Scholar 

  19. Zhao Z, Li X, Ji H, et al. Microstructure and electrical properties in Zn-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoelectric ceramics. Journal of Alloys and Compounds, 2015, 637: 291–296

    Article  Google Scholar 

  20. Chen C, Zhang H, Deng H, et al. Electric field and temperatureinduced phase transition in Mn-doped Na1/2Bi1/2TiO3–5.0at.% BaTiO3 single crystals investigated by micro-Raman scattering. Applied Physics Letters, 2014, 104(14): 142902 (3 pages)

    Google Scholar 

  21. Karan N K, Katiyar R S, Maiti T, et al. Raman spectral studies of Zr4+ rich BaZrxTi1–xO3 (0.5x1.00) phase diagram. Journal of Raman Spectroscopy, 2009, 40(4): 370–375

    Article  Google Scholar 

  22. Dobal P S, Katiyar R S. Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. Journal of Raman Spectroscopy, 2002, 33(6): 405–423

    Article  Google Scholar 

  23. Damjanovic D, Biancoli A, Batooli L, et al. Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba (Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)TiO3. Applied Physics Letters, 2012, 100(19): 192907 (3 pages)

    Google Scholar 

  24. Ramana E V, Mahajan A, Graça M P F, et al. Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics. Materials Research Bulletin, 2013, 48(10): 4395–4401

    Article  Google Scholar 

  25. Han C, Wu J, Pu C, et al. High piezoelectric coefficient of Pr2O3- doped Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics. Ceramics International, 2012, 38(8): 6359–6363

    Article  Google Scholar 

  26. Li J, Sun X, Zhang X, et al. Synthesis and characterization of sol–gel derived Ba0.85Ca0.15Ti0.9Zr0.1O3–xCuO ceramics. Physica Status Solidi A: Applications and Materials Science, 2013, 210 (3): 533–537

    Article  Google Scholar 

  27. Tian Y, Wei L, Chao X, et al. Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. Journal of the American Ceramic Society, 2013, 96(2): 496–502

    Google Scholar 

  28. Chen Z, Yang Q, Li H, et al. Cr–MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. Journal of Catalysis, 2010, 276(1): 56–65

    Article  Google Scholar 

  29. Trunschke A, Hoang D L, Radnik J, et al. Influence of lanthana on the nature of surface chromium species in La2O3-modified CrOx/ ZrO2 catalysts. Journal of Catalysis, 2000, 191(2): 456–466

    Article  Google Scholar 

  30. Shen Z, Wang X, Gong H, et al. Effect of MnO2 on the electrical and dielectric properties of Y-doped Ba0.95Ca0.05Ti0.85Zr0.15O3 ceramics in reducing atmosphere. Ceramics International, 2014, 40(9): 13833–13839

    Article  Google Scholar 

  31. Li W, Xu Z, Chu R, et al. Piezoelectric and dielectric properties of (Ba1–xCax)(Ti0.95Zr0.05)O3 lead-free Ceramics. Journal of the American Ceramic Society, 2010, 93(10): 2942–2944

    Article  Google Scholar 

  32. Li W, Xu Z, Chu R, et al. High piezoelectric d33 coefficient in (Ba1–xCax)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature. Materials Letters, 2010, 64(21): 2325–2327

    Article  Google Scholar 

  33. Praveen J P, Karthik T, James A R, et al. Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. Journal of the European Ceramic Society, 2015, 35(6): 1785–1798

    Article  Google Scholar 

  34. Rafiq M A, Rafiq M N, Saravanan K V. Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceramics International, 2015, 41(9): 11436–11444

    Article  Google Scholar 

  35. Raymond O, Font R, Suárez-Almodovar N, et al. Frequencytemperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. Journal of Applied Physics, 2005, 97(8): 084107

    Google Scholar 

  36. Peláiz-Barranco A, Guerra J D S, López-Noda R, et al. Ionized oxygen vacancy-related electrical conductivity in (Pb1–xLax) (Zr0.90Ti0.10)1–x/4O3 ceramics. Journal of Physics D: Applied Physics, 2008, 41(21): 215503

    Article  Google Scholar 

  37. Jiang X, Jiang X, Chen C, et al. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation. Frontiers of Materials Science, 2016, 10(1): 31–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Xia or Xiangping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Jiang, X., Chen, C. et al. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics. Front. Mater. Sci. 10, 203–210 (2016). https://doi.org/10.1007/s11706-016-0342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-016-0342-z

Keywords

Navigation