Skip to main content

Advertisement

Log in

The inflammation score predicts the prognosis of gastric cancer patients undergoing Da Vinci robot surgery

  • Research
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2024

This article has been updated

Abstract

Neutrophil-to-lymphocyte ratio (NLR), calculated from peripheral blood immune-inflammatory cell counts, is considered a predictor of survival in various cancers. Nevertheless, there is a lack of research into the predictive value of NLR specifically in gastric cancer patients following surgery using the Da Vinci robot. Investigate the objectives of this research, confirm the positive predictive value of NLR in the prognosis of gastric cancer patients undergoing Da Vinci robotic-assisted surgery by comparing its prognostic ability with other inflammation markers and tumor biomarkers. In this retrospective analysis, information from 128 individuals diagnosed with gastric cancer and treated with da Vinci robot-assisted surgery was examined. The study examined various markers in the peripheral blood, including neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ratio (LMR), systemic immune-inflammatory index (SII) prognostic nutrition index (PNI), cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 72-4 (CA72-4), carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP).To ascertain the prognostic ability and optimal cutoff values of each parameter, operating characteristic curves and the area under the curve were utilized in the analysis. For evaluation of independent prognostic factors, we utilized Kaplan–Meier curves and multifactorial Cox analysis. The variables from the multifactorial Cox analysis were used to construct a nomogram. NLR, LMR, CEA, AFP, primary location, largest tumor size and TNM stage were all found to be significant predictive elements for overall survival (OS). Multivariate Cox identified NLR (P = 0.005), LMR (P = 0.03) and AFP (P = 0.007) as the only separate predictive variables among hematological indicators. The nomogram built using NLR demonstrates excellent predictive performance at 1 year (AUC = 0.778), 3 years (AUC = 0.773), and 5 years (AUC = 0.781). Cross-validation demonstrates that this model has favorable predictive performance and discriminative ability. NLR is an uncomplicated yet potent marker for forecasting the survival result of individuals with gastric cancer following da Vinci robotic surgery, and it possesses considerable predictive significance. The nomogram based on NLR provides patients with a visual and accurate prognosis prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Shi Y, Xu X, Zhao Y, Qian F, Tang B, Hao Y, Luo H, Chen J, Yu P (2018) Short-term surgical outcomes of a randomized controlled trial comparing laparoscopic versus open gastrectomy with D2 lymph node dissection for advanced gastric cancer. Surg Endosc 32(5):2427–2433. https://doi.org/10.1007/s00464-017-5942-x

    Article  PubMed  Google Scholar 

  2. Shi Y, Xu X, Zhao Y, Qian F, Tang B, Hao Y, Luo H, Chen J, Yu P (2019) Long-term oncologic outcomes of a randomized controlled trial comparing laparoscopic versus open gastrectomy with D2 lymph node dissection for advanced gastric cancer. Surgery 165(6):1211–1216. https://doi.org/10.1016/j.surg.2019.01.003

    Article  PubMed  Google Scholar 

  3. Hu Y, Huang C, Sun Y et al (2016) Morbidity and mortality of laparo­scopic versus open D2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J Clin Oncol 34(12):1350–1357. https://doi.org/10.1200/JCO.2015.63.7215

    Article  PubMed  Google Scholar 

  4. Yu J, Huang C, Sun Y, Su X, Cao H, Hu J, Wang K, Suo J, Tao K, He X, Wei H, Ying M, Hu W, Du X, Hu Y, Liu H, Zheng C, Li P, Xie J, Liu F, Li Z, Zhao G, Yang K, Liu C, Li H, Chen P, Ji J, Li G, Chinese Laparoscopic Gastrointestinal Surgery Study (CLASS) Group (2019) Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 Randomized Clinical Trial. JAMA 321(20):1983–1992. https://doi.org/10.1001/jama.2019.5359

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guerrini GP, Esposito G, Magistri P, Serra V, Guidetti C, Olivieri T, Catellani B, Assirati G, Ballarin R, Di Sandro S, Di Benedetto F (2020) Robotic versus laparoscopic gastrectomy for gastric cancer: The largest meta-analysis. Int J Surg 82:210–228. https://doi.org/10.1016/j.ijsu.2020.07.053

    Article  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12(10):584–596. https://doi.org/10.1038/nrclinonc.2015.105

    Article  CAS  PubMed  Google Scholar 

  8. Hou J, Karin M, Sun B (2021) Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 18(5):261–279. https://doi.org/10.1038/s41571-020-00459-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diem S, Schmid S, Krapf M, Flatz L, Born D, Jochum W, Templeton AJ, Früh M (2017) Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 111:176–181. https://doi.org/10.1016/j.lungcan.2017.07.024

    Article  PubMed  Google Scholar 

  10. Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E, Berlanga-Taylor AJ (2020) Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med 18(1):360. https://doi.org/10.1186/s12916-020-01817-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao QT, Yuan Z, Zhang H, Zhang XP, Wang HE, Wang ZK, Duan GC (2016) Prognostic role of platelet to lymphocyte ratio in non-small cell lung cancers: a meta-analysis including 3,720 patients. Int J Cancer 139(1):164–170. https://doi.org/10.1002/ijc.30060

    Article  CAS  PubMed  Google Scholar 

  12. Tan D, Fu Y, Tong W, Li F (2018) Prognostic significance of lymphocyte to monocyte ratio in colorectal cancer: a meta-analysis. Int J Surg 55:128–138. https://doi.org/10.1016/j.ijsu.2018.05.030

    Article  PubMed  Google Scholar 

  13. Ma JY, Liu Q (2018) Clinicopathological and prognostic significance of lymphocyte to monocyte ratio in patients with gastric cancer: a meta-analysis. Int J Surg 50:67–71. https://doi.org/10.1016/j.ijsu.2018.01.002

    Article  PubMed  Google Scholar 

  14. Zhang K, Hua YQ, Wang D, Chen LY, Wu CJ, Chen Z, Liu LM, Chen H (2019) Systemic immune-inflammation index predicts prognosis of patients with advanced pancreatic cancer. J Transl Med 17(1):30. https://doi.org/10.1186/s12967-019-1782-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nie D, Gong H, Mao X, Li Z (2019) Systemic immune-inflammation index predicts prognosis in patients with epithelial ovarian cancer: a retrospective study. Gynecol Oncol 152(2):259–264. https://doi.org/10.1016/j.ygyno.2018.11.034

    Article  PubMed  Google Scholar 

  16. Kitahara H, Shoji F, Akamine T, Kinoshita F, Haratake N, Takenaka T, Tagawa T, Sonoda T, Shimokawa M, Maehara Y, Mori M (2021) Preoperative prognostic nutritional index level is associated with tumour-infiltrating lymphocyte status in patients with surgically resected lung squamous cell carcinoma. Eur J Cardiothorac Surg 60(2):393–401. https://doi.org/10.1093/ejcts/ezab046

    Article  PubMed  Google Scholar 

  17. Wang X, Wang Y (2019) The prognostic nutritional index is prognostic factor of gynecological cancer: a systematic review and meta-analysis. Int J Surg 67:79–86. https://doi.org/10.1016/j.ijsu.2019.05.018

    Article  PubMed  Google Scholar 

  18. Karn T, Pusztai L, Rody A, Holtrich U, Becker S (2015) The influence of host factors on the prognosis of breast cancer: stroma and immune cell components as cancer biomarkers. Curr Cancer Drug Targets 15(8):652–664. https://doi.org/10.2174/156800961508151001101209

    Article  CAS  PubMed  Google Scholar 

  19. Maletzki C, Emmrich J (2010) Inflammation and immunity in the tumor environment. Dig Dis 28(4–5):574–578. https://doi.org/10.1159/000321062

    Article  CAS  PubMed  Google Scholar 

  20. Duan RD, Nilsson A (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48(1):62–72. https://doi.org/10.1016/j.plipres.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Junfeng Z, Yan S, Bo T et al (2014) Robotic gastrectomy versus laparoscopic gastrectomy for gastric cancer: comparison of surgical performance and short-term outcomes. Surg Endosc 28(6):1779–1787. https://doi.org/10.1007/s00464-013-3385-6

    Article  PubMed  Google Scholar 

  22. Gao Y, Xi H, Qiao Z et al (2019) Comparison of robotic- and laparoscopic-assisted gastrectomy in advanced gastric cancer: updated short- and long-term results. Surg Endosc 33(2):528–534. https://doi.org/10.1007/s00464-018-6327-5

    Article  PubMed  Google Scholar 

  23. Bobo Z, Xin W, Jiang L et al (2019) Robotic gastrectomy versus laparo­scopic gastrectomy for gastric cancer: meta-analysis and trial sequential analysis of prospective observational studies. Surg Endosc 33(4):1033–1048. https://doi.org/10.1007/s00464-018-06648-z

    Article  PubMed  Google Scholar 

  24. Parisi A, Reim D, Borghi F et al (2017) Minimally invasive surgery for gastric cancer: a comparison between robotic, laparoscopic and open surgery. World J Gastroenterol 23(13):2376–2384. https://doi.org/10.3748/wjg.v23.il3.2376

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  26. McMillan DC (2009) Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care 12(3):223–226. https://doi.org/10.1097/MCO.0b013e32832a7902

    Article  PubMed  Google Scholar 

  27. Moses K, Brandau S (2016) Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 28(2):187–196. https://doi.org/10.1016/j.smim.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  28. Felix K, Gaida MM (2016) Neutrophil-derived proteases in the microenvironment of pancreatic cancer—active players in tumor progression. Int J Biol Sci 12(3):302–313. https://doi.org/10.7150/ijbs.14996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458. https://doi.org/10.1172/JCI67484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Najmeh S, Cools-Lartigue J, Rayes RF, Gowing S, Vourtzoumis P, Bourdeau F, Giannias B, Berube J, Rousseau S, Ferri LE, Spicer JD (2017) Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions. Int J Cancer 140(10):2321–2330. https://doi.org/10.1002/ijc.30635

    Article  CAS  PubMed  Google Scholar 

  31. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590. https://doi.org/10.1016/j.ccr.2011.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24(1):130–137. https://doi.org/10.1016/j.ccr.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  33. Stanger BZ, Kahn ML (2013) Platelets and tumor cells: a new form of border control. Cancer Cell 24(1):9–11. https://doi.org/10.1016/j.ccr.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim MR, Kim AS, Choi HI, Jung JH, Park JY, Ko HJ (2020) Inflammatory markers for predicting overall survival in gastric cancer patients: a systematic review and meta-analysis. PLoS ONE 15(7):e0236445. https://doi.org/10.1371/journal.pone.0236445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao W, Yao X, Cen D, Zhi Y, Zhu N, Xu L (2020) The prognostic role of platelet-to-lymphocyte ratio on overall survival in gastric cancer: a systematic review and meta-analysis. BMC Gastroenterol 20(1):16. https://doi.org/10.1186/s12876-020-1167-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang B, Huang Y, Lin T (2020) Prognostic impact of elevated pre-treatment systemic immune-inflammation index (SII) in hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore) 99(1):e18571. https://doi.org/10.1097/MD.0000000000018571

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Li Y, Chen P, Xu W, Wu Y, Che G (2019) Prognostic value of the pretreatment systemic immune-inflammation index (SII) in patients with non-small cell lung cancer: a meta-analysis. Ann Transl Med 7(18):433. https://doi.org/10.21037/atm.2019.08.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen JH, Zhai ET, Yuan YJ, Wu KM, Xu JB, Peng JJ, Chen CQ, He YL, Cai SR (2017) Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J Gastroenterol 23(34):6261–6272. https://doi.org/10.3748/wjg.v23.i34.6261

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qiu Y, Zhang Z, Chen Y (2021) Prognostic value of pretreatment systemic immune-inflammation index in gastric cancer: a meta-analysis. Front Oncol 11(11):537140. https://doi.org/10.3389/fonc.2021.537140

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shi H, Jiang Y, Cao H, Zhu H, Chen B, Ji W (2018) Nomogram based on systemic immune-inflammation index to predict overall survival in gastric cancer patients. Dis Markers 2(2018):1787424. https://doi.org/10.1155/2018/1787424

    Article  CAS  Google Scholar 

  41. Tomita M, Ayabe T, Nakamura K (2018) The advanced lung cancer inflammation index is an independent prognostic factor after surgical resection in patients with non-small-cell lung cancer. Interact Cardiovasc Thorac Surg 26(2):288–292. https://doi.org/10.1093/icvts/ivx329

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XC, YZ designed the study. XC, ZL, JS collected the data. XC, ZL, JS analyzed the data. XC, ZL, JS visualized the data. XC drafted the manuscript. PJ revised the manuscript.

Corresponding author

Correspondence to Jipeng Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This is an observational study. The Xijing Hospital Ethics Committee has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 698 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, Y., Liu, Z. et al. The inflammation score predicts the prognosis of gastric cancer patients undergoing Da Vinci robot surgery. J Robotic Surg 18, 131 (2024). https://doi.org/10.1007/s11701-024-01840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11701-024-01840-x

Keywords

Navigation